Search results for: recurrent cystitis
302 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 270301 Eradicating Micronutrient Deficiency through Biofortification
Authors: Ihtasham Hamza
Abstract:
In the contemporary world, where the West is afflicted by the diseases of excess nutrition, much of the rest globe suffers at the hands of hunger. A troubling constituent of hunger is micronutrient deficiency, also called hidden hunger. Major dependence on calorie-rich diets and low diet diversification are responsible for high malnutrition rates, especially in African and Asian countries. But the dilemma isn’t immune to solutions. Highlighting the substantial cause to be sole dependence on staples for food, biofortification has emerged as a novel tool to confront the widely distributed jeopardize of hidden hunger. Biofortification potentials the better nutritional approachability to commonalities overcoming various difficulties and reaching the doorstep. The crops associated with biofortification offer a rural-based involvement that, proposal, primarily reaches these more remote populations, which comprise a majority of the malnourished in many countries, and then penetrates to urban populations as assembly overages are marketed. Initial investments in agricultural research at a central location can generate high recurrent benefits at low cost as adapted biofortified cultivars become widely available in countries across time at low recurrent costs as opposed to supplementation which is comparatively expensive and requires continued financing over time, which may be imperilled by fluctuating political curiosity.Keywords: biofortified crops, hunger, malnutrition, agricultural practices
Procedia PDF Downloads 291300 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 115299 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 156298 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations
Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha
Abstract:
This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation
Procedia PDF Downloads 153297 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections
Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta
Abstract:
Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology
Procedia PDF Downloads 138296 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study
Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao
Abstract:
This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.Keywords: TPO antibody, subclinical hypothyroidism, anti nuclear antibody, thyroxin
Procedia PDF Downloads 326295 Problems of ICT Adoption in Nigerian Small and Medium Scale Enterprises
Authors: Ajayi Adeola
Abstract:
The study examined the sources of revenue in Osun State. It determined the impact of revenue consultants on the internally generated revenue of Osun State Government, all with a view to surveying the expenditure pattern of the state. In the course of carrying out the study, data were collected primarily through interview method. Four principal officers in the financial sector were interviewed. However, secondary sources of data were collected from Osun State of Nigeria audited reports and financial statements for the year ended 31st December, 1997 to 2006. The data generated were analyzed using percentages and pie-chart for illustrations. The findings of the study revealed that the sources of revenue for Osun State Government included internally generated revenue (IGR), statutory allocation, value added tax (VAT) and capital projects. It also discovered that Statutory Allocation was the dominant sources of government revenue during the period of study. It accounted for 63.69% while IGR was 19.7%, value added tax (VAT) 8.07% and capital Receipts 8.48%. The study also discovered that the recurrent expenditure overshot the capital expenditure during the period of study on ratio 7:3 respectively while the state recorded surplus budget in seven times and deficit budgets in 2003 and 2004. The study concluded that the Osun State government was over dependent on external sources to finance recurrent and capital expenditure during the period of study.Keywords: information communication technology, ICT adoption, ICT solution, small and medium scale enterprises
Procedia PDF Downloads 412294 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction
Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao
Abstract:
Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme
Procedia PDF Downloads 119293 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria
Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui
Abstract:
Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.Keywords: Gaucher disease, mutations, N370S, L444P
Procedia PDF Downloads 409292 Endometrioma Ethanol Sclerotherapy
Authors: Lamia Bensissaid
Abstract:
Goals: Endometriosis affects 6 to 10% of women of childbearing age. 17 to 44% of them have ovarian endometriomas. Medical and surgical treatments represent the two therapeutic axes with which PMA can be associated. Laparoscopic intraperitoneal ovarian cystectomy is described as the reference technique in the management of endometriomas by learned societies (CNGOF, ESHRE, NICE). However, it leads to a significant short-term reduction in the AMH level and the number of antral follicles, especially in cases of bilateral cystectomy, large cyst size or cystectomy after recurrence. Often, the disease is at an advanced stage with several surgical patients. Most have adhesions, which increase the risk of surgical complications and suboptimal resection and, therefore recurrence of the cyst. These results led to a change of opinion towards a conservative approach. Sclerotherapy is an old technique which acts by fibrinoid necrosis. It consists of injecting a sclerosing agent into the cyst cavity. Results : Recurrence was less than 15% for a 12-month follow-up; these rates are comparable to those of surgery. It does not seem to have a negative impact on ovarian reserve, but this is not sufficiently evaluated. It has an advantage in IVF pregnancy rates compared to cystectomy, particularly in cases of recurrent endometriomas. It has the advantages: · To be done on an outpatient basis. · To be inexpensive. · To avoid sometimes difficult and iterative surgery: · To allow an increase in pregnancy rates and the preservation of the ovarian reserve compared to iterative surgery. · of great interest in cases of bilateral endometriomas (kissing ovaries) or recurrent endometriomas. Conclusions: Ethanol sclerotherapy could be a good alternative to surgery.Keywords: Endometrioma, Sclerotherapy, infertility, Ethanol
Procedia PDF Downloads 68291 Epicardial Fat Necrosis in a Young Female: A Case Report
Authors: Tayyibah Shah Alam, Joe Thomas, Nayantara Shenoy
Abstract:
Presenting a case that we would like to share, the answer is straight forward but the path taken to get to the diagnosis is where it gets interesting. A 31-year-old lady presented to the Rheumatology Outpatient department with left-sided chest pain associated with left-sided elbow joint pain intensifying over the last 2 days. She had been having a prolonged history of chest pain with minimal intensity since 2016. The pain is intermittent in nature. Aggravated while exerting, lifting heavy weights and lying down. Relieved while sitting. Her physical examination and laboratory tests were within normal limits. An electrocardiogram (ECG) showed normal sinus rhythm and a chest X-ray with no significant abnormality was noted. The primary suspicion was recurrent costochondritis. Cardiac blood inflammatory markers and Echo were normal, ruling out ACS. CT chest and MRI Thorax contrast showed small ill-defined STIR hyperintensity with thin peripheral enhancement in the anterior mediastinum in the left side posterior to the 5th costal cartilage and anterior to the pericardium suggestive of changes in the fat-focal panniculitis. Confirming the diagnosis as Epicardial fat necrosis. She was started on Colchicine and Nonsteroidal anti-inflammatory drugs for 2-3 weeks, following which a repeat CT showed resolution of the lesion and improvement in her. It is often under-recognized or misdiagnosed. CT scan was collectively used to establish the diagnosis. Making the correct diagnosis prospectively alleviates unnecessary testing in favor of conservative management.Keywords: EFN, panniculitis, unknown etiology, recurrent chest pain
Procedia PDF Downloads 105290 Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy
Authors: Charles Shang, Salina Ramirez, Stephen Shang, Maria Estrada, Timothy R. Williams
Abstract:
Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy.Keywords: prostate salvage radiotherapy, proton therapy, biological radiation tolerance, radiobiology of organs
Procedia PDF Downloads 23289 Efficacy and Safety of Updated Target Therapies for Treatment of Platinum-Resistant Recurrent Ovarian Cancer
Authors: John Hang Leung, Shyh-Yau Wang, Hei-Tung Yip, Fion, Ho Tsung-chin, Agnes LF Chan
Abstract:
Objectives: Platinum-resistant ovarian cancer has a short overall survival of 9–12 months and limited treatment options. The combination of immunotherapy and targeted therapy appears to be a promising treatment option for patients with ovarian cancer, particularly to patients with platinum-resistant recurrent ovarian cancer (PRrOC). However, there are no direct head-to-head clinical trials comparing their efficacy and toxicity. We, therefore, used a network to directly and indirectly compare seven newer immunotherapies or targeted therapies combined with chemotherapy in platinum-resistant relapsed ovarian cancer, including antibody-drug conjugates, PD-1 (Programmed death-1) and PD-L1 (Programmed death-ligand 1), PARP (Poly ADP-ribose polymerase) inhibitors, TKIs (Tyrosine kinase inhibitors), and antiangiogenic agents. Methods: We searched PubMed (Public/Publisher MEDLINE), EMBASE (Excerpta Medica Database), and the Cochrane Library electronic databases for phase II and III trials involving PRrOC patients treated with immunotherapy or targeted therapy plus chemotherapy. The quality of included trials was assessed using the GRADE method. The primary outcomes compared were progression-free survival, the secondary outcomes were overall survival and safety. Results: Seven randomized controlled trials involving a total of 2058 PRrOC patients were included in this analysis. Bevacizumab plus chemotherapy showed statistically significant differences in PFS (Progression-free survival) but not OS (Overall survival) for all interested targets and immunotherapy regimens; however, according to the heatmap analysis, bevacizumab plus chemotherapy had a statistically significant risk of ≥grade 3 SAEs (Severe adverse effects), particularly hematological severe adverse events (neutropenia, anemia, leukopenia, and thrombocytopenia). Conclusions: Bevacizumab plus chemotherapy resulted in better PFS as compared with all interested regimens for the treatment of PRrOC. However, statistical differences in SAEs as bevacizumab plus chemotherapy is associated with a greater risk for hematological SAE.Keywords: platinum-resistant recurrent ovarian cancer, network meta-analysis, immune checkpoint inhibitors, target therapy, antiangiogenic agents
Procedia PDF Downloads 84288 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 45287 Functionality of Promotional and Advertising Texts: Pragmatic Implications for English-Arabic Translation
Authors: Jamal Gaber Abdalla
Abstract:
In business promotion and advertising, language is used intentionally to create a powerful influence over people and their behavior. In commercial and marketing activities, the choice of language to convey specific messages with the intention of influencing people is pragmatically important. Design and visual content in promotional and advertising texts also have a great persuasive impact on consumers. It is the functional combination of design, language and visual content that helps people to identify a product or service and remember it. Translating promotional and advertising texts between structurally and culturally different languages, such as English and Arabic, usually involves pragmatic/functional shifts that decide the quality of translation. This study explores some of these shifts in translating promotional and advertising texts between English and Arabic and their implications for translation quality. The study is based on a contrastive analysis of data collected from real samples of English-Arabic translations of promotional and advertising texts. The samples cover different promotional and advertising text types and different business domains. The aim is to identify the most recurrent translation shifts and most used translation approaches/strategies that achieve quality in view of the functional nature of promotional and advertising texts and target language culture conventions. The study shows that linguistic shifts and visual shifts are recurrent in English-Arabic translations of promotional and advertising texts. The study also shows that the most commonly used translation approaches/strategies are functional translation, domestication, communicative translation.Keywords: advertising, Arabic, English, functional translation, promotion
Procedia PDF Downloads 365286 Cost of Governance in Nigeria: In Whose Interest
Authors: Francis O. Iyoha, Daniel E. Gberevbie, Charles T. Iruonagbe, Matthew E. Egharevba
Abstract:
Cost of governance in Nigeria has become a challenge to development and concern to practitioners and scholars alike in the field of business and social science research. It has been observed that it takes 70 percent of the nation’s revenue to maintain less than 20 percent of the Nigerian population that are public servants. Furthermore, it has been observed that on a consistent yearly basis, the recurrent expenditure of government from the national budget keeps rising, while capital expenditure meant for development keeps falling. The implication is that development is stagnated in the country. For instance, in the 2010 national budget of NGN4.60tn or USD28.75b, only NGN1.80tn or USD11.15b was set aside for capital expenditure. Also, in the 2013 national budget of NGN4.92tn or USD30.75b, only NGN1.50tn or USD9.38b was set aside for capital expenditure. Therefore, with the analysis of secondary data, this study examined the reasons for the high cost of governance in Nigeria. It observed that the high cost of governance in the country is in the interest of the ruling class, arising from their unethical behaviour – corrupt practices and the poor management of public resources. As a result, the study recommends the need to intensify the war against corruption and mismanagement of public resources by government officials as possible solution to overcome the high cost of governance in Nigeria. This could be achieved by strengthening the constitutional powers of the various anti-corruption agencies in the area of arrest, investigation and prosecution of offenders without the interference of the executive arm of government either at the local, state or federal level.Keywords: cost of governance, capital expenditure, recurrent expenditure, unethical behavior, Nigeria
Procedia PDF Downloads 343285 An Online Corpus-Based Bilingual Collocations Dictionary for Second/Foreign Language Learners
Authors: Adriane Orenha-Ottaiano
Abstract:
Collocations are conventionalized, recurrent and arbitrary lexical combinations. Due to the fact that they are highly specific for a particular language and may be contextually restricted, collocations pose a problem to EFL/ESL learners with regard to production or encoding. Taking that into account, the compilation of monolingual and bilingual collocations dictionaries for the referred audience is highly crucial and significant. Thus, the aim of this paper is to discuss the importance of the compilation of an Online Corpus-based Bilingual Collocations Dictionary, in the English-Portuguese and Portuguese-English directions. On a first phase, with the use of WordSmith Tools, the collocations were extracted from a Translation Learner Corpus (TLC), a parallel corpus made up of university students’ translations in the Portuguese-English direction, with approximately 100,000 words. In a second stage, based on the keywords analyzed from the TLC, more collocational patterns were extracted using the Sketch Engine. In order to include more collocations as well as to ensure dictionary users will have access to more frequent and recurrent collocations, we also use the frequency list from The Corpus of Contemporary American English, with the purpose of extracting more patterns. The dictionary focuses on all types of collocations (verbal, noun, adjectival and adverbial collocations), in order to help the referred audience use them more accurately and productively – so far the dictionary has more than 330 entries, and more than 3,500 collocations extracted. The idea of having the proposed dictionary in online format may allow to incorporate more qualitatively and quantitatively collocational information. Besides, more examples may be included, different from conventional printed collocations dictionaries. Being the first bilingual collocations dictionary in the aforementioned directions, it is hoped to achieve the challenge of meeting learners’ collocational needs as the collocations have been selected according to learners’ difficulties regarding the use of collocations.Keywords: Corpus-Based Collocations Dictionary, Collocations , Bilingual Collocations Dictionary, Collocational Patterns
Procedia PDF Downloads 312284 Comparison of Er:YAG Laser with Bur Prepared Cavities: A Systematic Review
Authors: Sarina Sahmeddini, Fahimeh Safarpour, Forough Pazhuheian
Abstract:
With the concepts of minimally invasive treatment and preventive dentistry gaining more and more recognition by dentists, there are many published clinical trials comparing the use of the erbium laser with traditional drilling for caries removal. However, the efficacy of the erbium laser is still controversial. The aim of this review study is to compare the effects of tooth preparation by laser irradiation and conventional preparation by bur to identify the best means for cavity preparation and reduction of recurrent caries. Randomized controlled trials, controlled clinical trials, and prospective, and retrospective cohort studies were included in this review. The eligibility criteria included studies in humans’ permanent teeth in which cavities were conducted in their cervical third and proximal surfaces. PubMed, Google scholar, and Scopus about Er:YAG laser and bur prepared cavities were carried out. The studies’ details were organized in four tables according to the groups: (1) Microleakage; (2) Morphological changes; (3) Microhardness; and (4) Bond strength. The initial search resulted in 134 articles, 12 studies published from 2012 up to March 2020 were included in this review. According to the risk of bias evaluation, all studies were classified as high quality. Clinical implications: Er:YAG lasers with the energy levels between 250 to 300 mJ can be proper alternatives to conventional burs, as minimal invasive instruments with no significant differences or better results in microleakage, microhardness, and bond strength compared with conventional burs. In conclusion, Er:YAG laser irradiations accompanied by phosphoric acid etching can reduce the chance of recurrent carries.Keywords: lasers, drilling, caries, micro leakage
Procedia PDF Downloads 137283 A Case Report on Diaphragm Disease of Small Bowel Following Usage of Non-Steroidal Anti-Inflammatory Drugs
Authors: Shivani Kuttuva, Bridget Fergie, Andrew Mishreki, Shovkat Mir, Fintan Bergin
Abstract:
Diaphragm disease (DD) of the small bowel is a condition wherein the bowel lumen is divided into a series of short compartments by multiple circumferential membranes of mucosa and submucosa, leading to pinhole lumen and subsequent obstruction. It is a rare condition commonly attributed to non-steroidal anti-inflammatory drugs (NSAIDs) usage. Herein we present a 31-yr-old-female with a history of NSAIDs usage for one year following neurosurgery, who presented with recurrent idiopathic small bowel obstruction, recalcitrant anaemia, and impaction of capsule endoscope on investigating for anaemia. The capsule endoscopy images demonstrated multiple circumferential strictures with ulcers at its tip and villous atrophy in the proximal bowel, suggestive of NSAIDs related damage. However, due to the lack of awareness of the detrimental effects of NSAIDs on bowel mucosa distal to the duodenum, the underlying aetiology of this clinical presentation remained a mystery for a significant duration. The patient had to undergo repeated laparotomies in order to relieve the symptoms of recurring acute small bowel obstruction. Upon examining the resected specimen under microscopy, the histopathological hallmark of expanded, fibrotic, and congested submucosa was picked up, leading to the confirmation of diaphragm disease. Thus, this case report aims to widen the awareness among clinicians and aid surgeons in devising a management plan for young individuals presenting with recurring episodes of obstruction due to Diaphragm disease.Keywords: capsule endoscopy, diaphragm disease, NSAIDs, recurrent small bowel obstruction
Procedia PDF Downloads 176282 A Multi-Stage Learning Framework for Reliable and Cost-Effective Estimation of Vehicle Yaw Angle
Authors: Zhiyong Zheng, Xu Li, Liang Huang, Zhengliang Sun, Jianhua Xu
Abstract:
Yaw angle plays a significant role in many vehicle safety applications, such as collision avoidance and lane-keeping system. Although the estimation of the yaw angle has been extensively studied in existing literature, it is still the main challenge to simultaneously achieve a reliable and cost-effective solution in complex urban environments. This paper proposes a multi-stage learning framework to estimate the yaw angle with a monocular camera, which can deal with the challenge in a more reliable manner. In the first stage, an efficient road detection network is designed to extract the road region, providing a highly reliable reference for the estimation. In the second stage, a variational auto-encoder (VAE) is proposed to learn the distribution patterns of road regions, which is particularly suitable for modeling the changing patterns of yaw angle under different driving maneuvers, and it can inherently enhance the generalization ability. In the last stage, a gated recurrent unit (GRU) network is used to capture the temporal correlations of the learned patterns, which is capable to further improve the estimation accuracy due to the fact that the changes of deflection angle are relatively easier to recognize among continuous frames. Afterward, the yaw angle can be obtained by combining the estimated deflection angle and the road direction stored in a roadway map. Through effective multi-stage learning, the proposed framework presents high reliability while it maintains better accuracy. Road-test experiments with different driving maneuvers were performed in complex urban environments, and the results validate the effectiveness of the proposed framework.Keywords: gated recurrent unit, multi-stage learning, reliable estimation, variational auto-encoder, yaw angle
Procedia PDF Downloads 150281 Clinical Effectiveness of Bulk-fill Resin Composite: A Review
Authors: Taraneh Estedlal
Abstract:
The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties.PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing incidence of fractures, color stability, marginal adaptation, pain and discomfort, recurrent caries, occlusion, pulpal reaction, and proper proximal contacts of restorations made with conventional and bulk resins. The failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites. The objective of this study was to review in-vivo and in-vitro studies to compare the effectiveness of bulk-fill and conventional resin composites with regard to marginal adaptation, polymerization shrinkage, and other mechanical properties. PubMed and Scopus databases was investigated for in-vitro studies and randomized clinical trials comparing one of the pearlier mentioned properties between bulk-fill and control composites. Despite differences in physical and in-vitro properties, failure rate of conventional and flowable bulk-fill resin composites was not significantly different to sculptable bulk-fill resin composites.Keywords: polymerization shrinkage, color stability, marginal adaptation, recurrent caries, occlusion, pulpal reaction
Procedia PDF Downloads 148280 Societal Stakes for Small Cruise Ships: A Recurrent Issue of Our Time
Authors: Maud Tixier
Abstract:
Societal issues are at stake for cruises anywhere, whatever the size of the ships and their destinations are. However, the Mediterranean sea is the main region where many operate and the challenges are both social and environmental. The presentation focuses on small ships, accounting for market niches, aimed at more specific cruise passengers and calling at less visited areas. How they cope with the benefit of all stakeholders is a persistent issue of our time.Keywords: environment, management, social, societal, safety
Procedia PDF Downloads 334279 Young Female’s Heart Was Bitten by Unknown Ghost (Isolated Cardiac Sarcoidosis): A Case Report
Authors: Heru Al Amin
Abstract:
Sarcoidosis is a granulomatous inflammatory disorder of unclear etiology that can affect multiple different organ systems. Isolated cardiac sarcoidosis is a very rare condition that causes lethal arrhythmia and heart failure. A definite diagnosis of cardiac sarcoidosis remains challenging. The use of multimodality imaging plays a pivotal role in the diagnosis of this entity. Case summary: In this report, we discuss a case of a 50-year-old woman who presented with recurrent palpitation, dizziness, vertigo and presyncope. Electrocardiogram revealed variable heart blocks, including first-degree AV block, second-degree AV block, high-degree AV block, complete AV block, trifascicular block and sometimes supraventricular arrhythmia. Twenty-four hours of Holter monitoring show atrial bigeminy, first-degree AV block and trifascicular block. Transthoracic echocardiography showed Thinning of basal anteroseptal and inferred septum with LV dilatation with reduction of Global Longitudinal Strain. A dual-chamber pacemaker was implanted. CT Coronary angiogram showed no coronary artery disease. Cardiac magnetic resonance revealed basal anteroseptal and inferior septum thinning with focal edema with LGE suggestive of sarcoidosis. Computed tomography of the chest showed no lymphadenopathy or pulmonary infiltration. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) of the whole body showed. We started steroids and followed up with the patient. Conclusion: This case serves to highlight the challenges in identifying and managing isolated CS in a young patient with recurrent syncope with variable heart block. Early, even late initiation of steroids can improve arrhythmia as well as left ventricular function.Keywords: cardiac sarcoidosis, conduction abnormality, syncope, cardiac MRI
Procedia PDF Downloads 95278 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network
Authors: Hozaifa Zaki, Ghada Soliman
Abstract:
In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.Keywords: computer vision, deep learning, image processing, character recognition
Procedia PDF Downloads 87277 A Corpus-Based Study on the Styles of Three Translators
Authors: Wang Yunhong
Abstract:
The present paper is preoccupied with the different styles of three translators in their translating a Chinese classical novel Shuihu Zhuan. Based on a parallel corpus, it adopts a target-oriented approach to look into whether and what stylistic differences and shifts the three translations have revealed. The findings show that the three translators demonstrate different styles concerning their word choices and sentence preferences, which implies that identification of recurrent textual patterns may be a basic step for investigating the style of a translator.Keywords: corpus, lexical choices, sentence characteristics, style
Procedia PDF Downloads 271276 Diaper Dermatitis and Pancytopenia as the Primary Manifestation in an Infant with Vitamin B12 Deficiency
Authors: Ekaterina Sánchez Romero, Emily Gabriela Aguirre Herrera, Sandra Luz Espinoza Esquerra, Jorge García Campos
Abstract:
Female, 7 months old, daughter of a mother with anemia during pregnancy, with no history of atopy in the family, since birth she presents with recurrent dermatological and gastrointestinal infections, chronically treated for recurrent diaper dermatitis. At 6 months of age, she begins with generalized pallor, hyperpigmentation in hands and feet, smooth tongue, psychomotor retardation with lack of head support, sedation, and hypoactivity. She was referred to our hospital for a fever of 38°C, severe diaper rash, and pancytopenia with HB 9.3, platelets 38000, neutrophils 0.39 MCV: 86.80 high for her age. The approach was initiated to rule out myeloproliferative syndrome, with negative immunohistochemical results of bone marrow aspirate; during her stay, she presented neurological regression, lack of sucking, and focal seizures. CT scan showed cortical atrophy. The patient was diagnosed with primary immunodeficiency due to history; gamma globulin was administered without improvement with normal results of immunoglobulins and metabolic screening. When dermatological and neurological diagnoses were ruled out as the primary cause, a nutritional factor was evaluated, and a therapeutic trial was started with the administration of vitamin B12 and zinc, presenting clinical neurological improvement and resolution of pancytopenia in 2 months. It was decided to continue outpatient management. Discussion: We present a patient with neurological, dermatological involvement, and pancytopenia, so the most common differential diagnoses in this population were ruled out. Vitamin B12 deficiency is an uncommon entity. Due to maternal and clinical history, a therapeutic trial was started resulting in an improvement. Conclusion: VitaminB12 deficiency should be considered one of the differential diagnoses in the approach to pancytopenia with megaloblastic anemia associated with dermatologic and neurologic manifestations. Early treatment can reduce irreversible damage in these patients.Keywords: vitamin B12 deficiency, pediatrics, pancytopenia, diaper dermatitis
Procedia PDF Downloads 103275 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 136274 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 35273 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 387