Search results for: polarization curve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1426

Search results for: polarization curve

1366 Comparative Operating Speed and Speed Differential Day and Night Time Models for Two Lane Rural Highways

Authors: Vinayak Malaghan, Digvijay Pawar

Abstract:

Speed is the independent parameter which plays a vital role in the highway design. Design consistency of the highways is checked based on the variation in the operating speed. Often the design consistency fails to meet the driver’s expectation which results in the difference between operating and design speed. Literature reviews have shown that significant crashes take place in horizontal curves due to lack of design consistency. The paper focuses on continuous speed profile study on tangent to curve transition for both day and night daytime. Data is collected using GPS device which gives continuous speed profile and other parameters such as acceleration, deceleration were analyzed along with Tangent to Curve Transition. In this present study, models were developed to predict operating speed on tangents and horizontal curves as well as model indicating the speed reduction from tangent to curve based on continuous speed profile data. It is observed from the study that vehicle tends to decelerate from approach tangent to between beginning of the curve and midpoint of the curve and then accelerates from curve to tangent transition. The models generated were compared for both day and night and can be used in the road safety improvement by evaluating the geometric design consistency.

Keywords: operating speed, design consistency, continuous speed profile data, day and night time

Procedia PDF Downloads 157
1365 Future of E-Democracy in Polarized Politics and Role of Government with Perspective of E-Leadership in Pakistan

Authors: Kousar Shaheen

Abstract:

The electoral process of Pakistan always remains underestimated due to malpractices claimed by the political leaders. The democratic system relies on public decision, selectorial process, transparent arrangements made by public administration, and governance system. Political polarization plays a vital role in any democratic system, which depends upon the way of applying leadership capabilities. In modern societies, public engagement is playing a key role in changing political polarization and implementation of the newest technologies, e-leadership and e-governance to bring e-democracy. The Overseas Pakistanis are unable to cast their votes in the selectorial process of Pakistan. To align this issue with civil society, efforts were made to implement modernized services and facilities by intervening in the Supreme Court. However, the results were found insignificant because of ineffective citizen engagement, IT-based, governance and public administration. which proved that the shifting to advanced society is crucial in Pakistan due to the elected Officials of current democratic system. It is an empirical study to involve Pakistani nationals (overseas) in the democratic process by utilizing the digital facility of vote casting. The role of Government. The role of e-leadership in changing the political polarization for the implementation of e-election will be measured by collecting data from different sources.

Keywords: e-democracy, e-leadership, political polarization, public engagement

Procedia PDF Downloads 39
1364 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. Sarma

Abstract:

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x-axis, y-axis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel poly fractal antenna are demonstrated.

Keywords: fractal, circular polarization, Minkowski, Koch

Procedia PDF Downloads 356
1363 Arithmetic Operations Based on Double Base Number Systems

Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan

Abstract:

Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.

Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm

Procedia PDF Downloads 396
1362 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment

Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby

Abstract:

Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.

Keywords: optical fiber, polarization mode dispersion, harsh environment, aging

Procedia PDF Downloads 383
1361 Horizontal Circular Curve Computations Using a Developed Calculator

Authors: Adil Hassabo

Abstract:

In this paper, a horizontal circular curve computations calculator is developed in Microsoft Windows. The developed calculator can be used for determining the necessary information required for setting out horizontal curves. Three methods are applied in the developed program namely: incremental chord method, total chord method, and the coordinates method. Computations of horizontal curves by the developed calculator is faster, easier, accurate, and less subject to errors comparable to the traditional method of calculations. Finally, the results obtained by the traditional method and by the developed calculator are presented for checking the behavior of the developed calculator.

Keywords: calculator, circular, computations, curve

Procedia PDF Downloads 162
1360 Performance Evaluation of a Millimeter-Wave Phased Array Antenna Using Circularly Polarized Elements

Authors: Rawad Asfour, Salam Khamas, Edward A. Ball

Abstract:

This paper is focused on the design of an mm-wave phased array. To date, linear polarization is adapted in the reported designs of phased arrays. However, linear polarization faces several well-known challenges. As such, an advanced design for phased array antennas is required that offers circularly polarized (CP) radiation. A feasible solution for achieving CP phased array antennas is proposed using open-circular loop antennas. To this end, a 3-element circular loop phased array antenna is designed to operate at 28GHz. In addition, the array ability to control the direction of the main lobe is investigated. The results show that the highest achievable field of view (FOV) is 100°, i.e., 50° to the left and 50° to the right-hand side directions. The results are achieved with a CP bandwidth of 15%. Furthermore, the results demonstrate that a high broadside gain of circa 11 dBi can be achieved for the steered beam. Besides, a radiation efficiency of 97 % can also be achieved based on the proposed design.

Keywords: loop antenna, phased array, beam steering, wide bandwidth, circular polarization, CST

Procedia PDF Downloads 302
1359 A Generalisation of Pearson's Curve System and Explicit Representation of the Associated Density Function

Authors: S. B. Provost, Hossein Zareamoghaddam

Abstract:

A univariate density approximation technique whereby the derivative of the logarithm of a density function is assumed to be expressible as a rational function is introduced. This approach which extends Pearson’s curve system is solely based on the moments of a distribution up to a determinable order. Upon solving a system of linear equations, the coefficients of the polynomial ratio can readily be identified. An explicit solution to the integral representation of the resulting density approximant is then obtained. It will be explained that when utilised in conjunction with sample moments, this methodology lends itself to the modelling of ‘big data’. Applications to sets of univariate and bivariate observations will be presented.

Keywords: density estimation, log-density, moments, Pearson's curve system

Procedia PDF Downloads 280
1358 Effect of Defect Dipoles And Microstructure Engineering in Energy Storage Performance of Co-doped Barium Titanate Ceramics

Authors: Mahmoud Saleh Mohammed Alkathy

Abstract:

Electricity generated from renewable resources may help the transition to clean energy. A reliable energy storage system is required to use this energy properly. To do this, a high breakdown strength (Eb) and a significant difference between spontaneous polarization (Pmax) and remnant polarization (Pr) are required. To achieve this, the defect dipoles in lead free BaTiO3 ferroelectric ceramics are created using Mg2+ and Ni2+ ions as acceptor co-doping in the Ti site. According to the structural analyses, the co-dopant ions were effectively incorporated into the BTO unit cell. According to the ferroelectric study, the co-doped samples display a double hysteresis loop, stronger polarization, and high breakdown strength. The formation of oxygen vacancies and defect dipoles prevent domains' movement, resulting in hysteresis loop pinching. This results in increased energy storage density and efficiency. The defect dipoles mechanism effect can be considered a fascinating technology that can guide the researcher working on developing energy storage for next-generation applications.

Keywords: microstructure, defect, energy storage, effciency

Procedia PDF Downloads 96
1357 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar

Authors: Chulsang Yoo, Gildo Kim

Abstract:

Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).

Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm

Procedia PDF Downloads 212
1356 Improvement of GVPI Insulation System Characteristics by Curing Process Modification

Authors: M. Shadmand

Abstract:

The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. 

Keywords: insulation system, GVPI, PDC, aging

Procedia PDF Downloads 268
1355 Gravitational Wave Solutions in Modified Gravity Theories

Authors: Hafiza Rizwana Kausar

Abstract:

In this paper, we formulate the wave equation in modified theories, particularly in f(R) theory, scalar-tensor theory, and metric palatine f(X) theory. We solve the wave equation in each case and try to find maximum possible solutions in the form polarization modes. It is found that modified theories present at most six modes however the mentioned metric theories allow four polarization modes, two of which are tensor in nature and other two are scalars.

Keywords: gravitational waves, modified theories, polariozation modes, scalar tensor theories

Procedia PDF Downloads 362
1354 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol

Procedia PDF Downloads 146
1353 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field

Procedia PDF Downloads 232
1352 Electrochemical Studies of Some Schiff Bases on the Corrosion of Steel in H2SO4 Solution

Authors: Ahmed A. Farag, M. A. Hgazy

Abstract:

The influence of three Schiff bases (SB-I, SB-II, and SB-III) on the corrosion of carbon steel in 0.5 M H2SO4 solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increases with the concentration of the Schiff bases and follow the trend: SB-III > SB-II > SB-I. Tafel polarization measurements revealed that the three tested inhibitors function as anodic inhibitors. The thermodynamic parameters Kads and ΔGºads are calculated and discussed. The Langmuir isotherm equation was found to provide an accurate description of the adsorption behaviour of the investigated Schiff bases. Depending on the results, the inhibitive mechanism was proposed.

Keywords: Schiff bases, corrosion inhibitors, EIS, adsorption

Procedia PDF Downloads 542
1351 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment

Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash

Abstract:

Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.

Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition

Procedia PDF Downloads 491
1350 Reconnaissance Geophysical Study on the Southeastern Part of Al-Qashah Aera, Kingdom of Saudi Arabia

Authors: Ali Al-Bakri, Mohammed Sazid

Abstract:

The investigated study area locates about 72 km from Jeddah city, Makkah district, Kingdom of Saudi Arabia. The study mainly aimed to define only in detail the most significant zones of possible mineralization and outline their subsurface parameters (location and strike) in the southeast part of Jabal Al-Qashah. Several geophysical methods have been conducted to carry out the goal. Among these methods are the ground magnetic method, self-potential (SP) method, and induced polarization (IP) method. Integrating these methods aims to help in delineating the possible mineralization in the study area. The magnetic survey was conducted along 17 profiles where these profiles were chosen to be perpendicular to the strike of the quartz shear zone. Self-potential was applied along with five profiles covering the study area. At the same time, induced polarization was used along with one profile located at the western side of the study area corresponding to some magnetic and SP profiles. The most interesting zones of mineralization were successfully determined by comparing the results of residual magnetic profile (3), SP profile (1), and IP profile, where geological structures control some mineralization.

Keywords: geophysical methods, magnetic method, self-potential, induced polarization, Jabal Al-Qashah

Procedia PDF Downloads 131
1349 Offline High Voltage Diagnostic Test Findings on 15MVA Generator of Basochhu Hydropower Plant

Authors: Suprit Pradhan, Tshering Yangzom

Abstract:

Even with availability of the modern day online insulation diagnostic technologies like partial discharge monitoring, the measurements like Dissipation Factor (tanδ), DC High Voltage Insulation Currents, Polarization Index (PI) and Insulation Resistance Measurements are still widely used as a diagnostic tools to assess the condition of stator insulation in hydro power plants. To evaluate the condition of stator winding insulation in one of the generators that have been operated since 1999, diagnostic tests were performed on the stator bars of 15 MVA generators of Basochhu Hydropower Plant. This paper presents diagnostic study done on the data gathered from the measurements which were performed in 2015 and 2016 as part of regular maintenance as since its commissioning no proper aging data were maintained. Measurement results of Dissipation Factor, DC High Potential tests and Polarization Index are discussed with regard to their effectiveness in assessing the ageing condition of the stator insulation. After a brief review of the theoretical background, the strengths of each diagnostic method in detecting symptoms of insulation deterioration are identified. The interesting results observed from Basochhu Hydropower Plant is taken into consideration to conclude that Polarization Index and DC High Voltage Insulation current measurements are best suited for the detection of humidity and contamination problems and Dissipation Factor measurement is a robust indicator of long-term ageing caused by oxidative degradation.

Keywords: dissipation Factor (tanδ), polarization Index (PI), DC High Voltage Insulation Current, insulation resistance (IR), Tan Delta Tip-Up, dielectric absorption ratio

Procedia PDF Downloads 312
1348 On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies

Authors: M. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, steel, oil sands slurry, polarization

Procedia PDF Downloads 294
1347 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA

Authors: Mohamad Khairi Ishak

Abstract:

Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.

Keywords: elliptic curve cryptography, FPGA, key sizes, memory

Procedia PDF Downloads 319
1346 Synergistic Erosion–Corrosion Behavior of Petroleum Pipelines at Various Conditions

Authors: M. A. Deyab, A. Al-Sabagh, S. Keera

Abstract:

The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of petroleum pipelines (carbon steel) in the oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in the oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size, and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect.

Keywords: erosion-corrosion, oil sands slurry, polarization, steel

Procedia PDF Downloads 318
1345 Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane

Authors: Aimad Oulebsir, Toufik Chaabane, Sivasankar Venkatramann, Andre Darchen, Rachida Maachi

Abstract:

The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature.

Keywords: nanofiltration, concentration polarisation, chromium salts, mass transfer

Procedia PDF Downloads 281
1344 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 364
1343 Regulation on Macrophage and Insulin Resistance after Aerobic Exercise in High-Fat Diet Mice

Authors: Qiaofeng Guo

Abstract:

Aims: Obesity is often accompanied by insulin resistance (IR) and whole-body inflammation. Aerobic exercise is an effective treatment to improve insulin resistance and inflammation. However, the anti-inflammatory mechanisms of exercise on epididymal and subcutaneous adipose remain to be elucidated. Here, we compared the macrophage polarization between epididymal and subcutaneous adipose after aerobic exercise. Methods: Male C57BL/6 mice were fed a normal diet group or a high-fat diet group for 12 weeks and performed aerobic training on a treadmill at 55%~65% VO₂ max for eight weeks. Food intake, body weight, and fasting blood glucose levels were monitored weekly. The intraperitoneal glucose tolerance test was to evaluate the insulin resistance model. Fat mass, blood lipid profile, serum IL-1β, TNF-α levels, and CD31/CD206 rates were analysed after the intervention. Results: FBG (P<0.01), AUCIPGTT (P<0.01), and HOMA-IR (P<0.01) increased significantly for a high-fat diet and decreased significantly after the exercise. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance and improved insulin sensitivity. Serum IL-1β, TNF-α, CD11C/CD206 expression in subcutaneous adipose tissue were not changed before and after exercise, but not in epididymal adipose tissue (P<0.01). Conclusion: Insulin resistance is not accompanied by chronic inflammation and M1 polarization of subcutaneous adipose tissue macrophages in high-fat diet mice. Aerobic exercise effectively improved lipid metabolism and insulin sensitivity, which may be closely associated with reduced M1 polarization of epididymal adipose macrophages.

Keywords: aerobic exercise, insulin resistance, chronic inflammation, adipose, macrophage polarization

Procedia PDF Downloads 78
1342 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid

Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola

Abstract:

The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.

Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel

Procedia PDF Downloads 318
1341 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 91
1340 A Low Profile Dual Polarized Slot Coupled Patch Antenna

Authors: Mingde Du, Dong Han

Abstract:

A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.

Keywords: dual polarized, patch antenna, slot coupled, base station antenna

Procedia PDF Downloads 462
1339 Diagnostic Accuracy of the Tuberculin Skin Test for Tuberculosis Diagnosis: Interest of Using ROC Curve and Fagan’s Nomogram

Authors: Nouira Mariem, Ben Rayana Hazem, Ennigrou Samir

Abstract:

Background and aim: During the past decade, the frequency of extrapulmonary forms of tuberculosis has increased. These forms are under-diagnosed using conventional tests. The aim of this study was to evaluate the performance of the Tuberculin Skin Test (TST) for the diagnosis of tuberculosis, using the ROC curve and Fagan’s Nomogram methodology. Methods: This was a case-control, multicenter study in 11 anti-tuberculosis centers in Tunisia, during the period from June to November2014. The cases were adults aged between 18 and 55 years with confirmed tuberculosis. Controls were free from tuberculosis. A data collection sheet was filled out and a TST was performed for each participant. Diagnostic accuracy measures of TST were estimated using ROC curve and Area Under Curve to estimate sensitivity and specificity of a determined cut-off point. Fagan’s nomogram was used to estimate its predictive values. Results: Overall, 1053 patients were enrolled, composed of 339 cases (sex-ratio (M/F)=0.87) and 714 controls (sex-ratio (M/F)=0.99). The mean age was 38.3±11.8 years for cases and 33.6±11 years for controls. The mean diameter of the TST induration was significantly higher among cases than controls (13.7mm vs.6.2mm;p=10-6). Area Under Curve was 0.789 [95% CI: 0.758-0.819; p=0.01], corresponding to a moderate discriminating power for this test. The most discriminative cut-off value of the TST, which were associated with the best sensitivity (73.7%) and specificity (76.6%) couple was about 11 mm with a Youden index of 0.503. Positive and Negative predictive values were 3.11% and 99.52%, respectively. Conclusion: In view of these results, we can conclude that the TST can be used for tuberculosis diagnosis with a good sensitivity and specificity. However, the skin induration measurement and its interpretation is operator dependent and remains difficult and subjective. The combination of the TST with another test such as the Quantiferon test would be a good alternative.

Keywords: tuberculosis, tuberculin skin test, ROC curve, cut-off

Procedia PDF Downloads 67
1338 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines

Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh

Abstract:

The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.

Keywords: wind energy, power curve, capacity factor, annual energy production

Procedia PDF Downloads 433
1337 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: laminar forced convection, curve pipe, return bend, nanufluid, CFD

Procedia PDF Downloads 297