Search results for: peruvian amazon
56 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods
Authors: Juan Heredia, Naci Dilekli
Abstract:
The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing
Procedia PDF Downloads 16355 Insight-Based Evaluation of a Map-Based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization
Procedia PDF Downloads 11554 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils
Authors: Antonella Hadzich, Santiago Flores
Abstract:
Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.Keywords: alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating
Procedia PDF Downloads 12253 A Scalable Media Job Framework for an Open Source Search Engine
Authors: Pooja Mishra, Chris Pollett
Abstract:
This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.Keywords: distributed jobs framework, news aggregation, video conversion, email
Procedia PDF Downloads 29852 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 12551 Introducing, Testing, and Evaluating a Unified JavaScript Framework for Professional Online Studies
Authors: Caspar Goeke, Holger Finger, Dorena Diekamp, Peter König
Abstract:
Online-based research has recently gained increasing attention from various fields of research in the cognitive sciences. Technological advances in the form of online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. However, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we propose and test a new JavaScript framework that enables researchers to conduct any kind of behavioral research in the browser without the need to program a single line of code. In particular our framework offers the possibility to manipulate and combine the experimental stimuli via a graphical editor, directly in the browser. Moreover, we included an action-event system that can be used to handle user interactions, interactively change stimuli properties or store participants’ responses. Besides traditional recordings such as reaction time, mouse and keyboard presses, the tool offers webcam based eye and face-tracking. On top of these features our framework also takes care about the participant recruitment, via crowdsourcing platforms such as Amazon Mechanical Turk. Furthermore, the build in functionality of google translate will ensure automatic text translations of the experimental content. Thereby, thousands of participants from different cultures and nationalities can be recruited literally within hours. Finally, the recorded data can be visualized and cleaned online, and then exported into the desired formats (csv, xls, sav, mat) for statistical analysis. Alternatively, the data can also be analyzed online within our framework using the integrated Ipython notebook. The framework was designed such that studies can be used interchangeably between researchers. This will support not only the idea of open data repositories but also constitutes the possibility to share and reuse the experimental designs and analyses such that the validity of the paradigms will be improved. Particularly, sharing and integrating the experimental designs and analysis will lead to an increased consistency of experimental paradigms. To demonstrate the functionality of the framework we present the results of a pilot study in the field of spatial navigation that was conducted using the framework. Specifically, we recruited over 2000 subjects with various cultural backgrounds and consequently analyzed performance difference in dependence on the factors culture, gender and age. Overall, our results demonstrate a strong influence of cultural factors in spatial cognition. Such an influence has not yet been reported before and would not have been possible to show without the massive amount of data collected via our framework. In fact, these findings shed new lights on cultural differences in spatial navigation. As a consequence we conclude that our new framework constitutes a wide range of advantages for online research and a methodological innovation, by which new insights can be revealed on the basis of massive data collection.Keywords: cultural differences, crowdsourcing, JavaScript framework, methodological innovation, online data collection, online study, spatial cognition
Procedia PDF Downloads 25750 Some Extreme Halophilic Microorganisms Produce Extracellular Proteases with Long Lasting Tolerance to Ethanol Exposition
Authors: Cynthia G. Esquerre, Amparo Iris Zavaleta
Abstract:
Extremophiles constitute a potentially valuable source of proteases for the development of biotechnological processes; however, the number of available studies in the literature is limited compared to mesophilic counterparts. Therefore, in this study, Peruvian halophilic microorganisms were characterized to select suitable proteolytic strains that produce active proteases under exigent conditions. Proteolysis was screened using the streak plate method with gelatin or skim milk as substrates. After that, proteolytic microorganisms were selected for phenotypic characterization and screened by a semi-quantitative proteolytic test using a modified method of diffusion agar. Finally, proteolysis was evaluated using partially purified extracts by ice-cold ethanol precipitation and dialysis. All analyses were carried out over a wide range of NaCl concentrations, pH, temperature and substrates. Of a total of 60 strains, 21 proteolytic strains were selected, of these 19 were extreme halophiles and 2 were moderates. Most proteolytic strains demonstrated differences in their biochemical patterns, particularly in sugar fermentation. A total of 14 microorganisms produced extracellular proteases, 13 were neutral, and one was alkaline showing activity up to pH 9.0. Proteases hydrolyzed gelatin as the most specific substrate. In general, catalytic activity was efficient under a wide range of NaCl (1 to 4 M NaCl), temperature (37 to 55 °C) and after an ethanol exposition performed at -20 °C for 24 hours. In conclusion, this study reported 14 candidates extremely halophiles producing extracellular proteases capable of being stable and active on a wide range of NaCl, temperature and even long lasting ethanol exposition.Keywords: biotechnological processes, ethanol exposition, extracellular proteases, extremophiles
Procedia PDF Downloads 28549 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 13148 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon
Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira
Abstract:
Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning
Procedia PDF Downloads 6647 Usability Evaluation of a Self-Report Mobile App for COVID-19 Symptoms: Supporting Health Monitoring in the Work Context
Authors: Kevin Montanez, Patricia Garcia
Abstract:
The confinement and restrictions adopted to avoid an exponential spread of the COVID-19 have negatively impacted the Peruvian economy. In this context, Industries offering essential products could continue operating, but they have to follow safety protocols and implement strategies to ensure employee health. In view of the increasing internet access and mobile phone ownership, “Alerta Temprana”, a mobile app, was developed to self-report COVID-19 symptoms in the work context. In this study, the usability of the mobile app “Alerta Temprana” was evaluated from the perspective of health monitors and workers. In addition to reporting the metrics related to the usability of the application, the utility of the system is also evaluated from the monitors' perspective. In this descriptive study, the participants used the mobile app for two months. Afterwards, System Usability Scale (SUS) questionnaire was answered by the workers and monitors. A Usefulness questionnaire with open questions was also used for the monitors. The data related to the use of the application was collected during one month. Furthermore, descriptive statistics and bivariate analysis were used. The workers rated the application as good (70.39). In the case of the monitors, usability was excellent (83.0). The most important feature for the monitors were the emails generated by the application. The average interaction per user was 30 seconds and a total of 6172 self-reports were sent. Finally, a statistically significant association was found between the acceptability scale and the work area. The results of this study suggest that Alerta Temprana has the potential to be used for surveillance and health monitoring in any context of face-to-face modality. Participants reported a high degree of ease of use. However, from the perspective of workers, SUS cannot diagnose usability issues and we suggest we use another standard usability questionnaire to improve "Alerta Temprana" for future use.Keywords: public health in informatics, mobile app, usability, self-report
Procedia PDF Downloads 11746 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka
Procedia PDF Downloads 39345 Exploring Gender Bias in Self-Report Measures of Psychopathy
Authors: Katie Strong, Brian P. O'Connor, Jacqueline M. Kanippayoor
Abstract:
To date, self-report measures of psychopathy have largely been conceptualized with a male-focused understanding of the disorder, with the presumption that psychopathy expression is uniform across genders. However, generalizing this understanding to the female population may be misleading. The objective of this research was to explore gender differences in the expression of psychopathy and to assess current self-report psychopathy measures for gender bias. It was hypothesized that some items in commonly used measures of psychopathy may show gender bias and that existing measures may not contain enough items that are relevant to the manifestation of psychopathy in women. An exploratory investigation was conducted on statistical bias in common measures of psychopathy, and novel, relevant, but previously neglected items and measures were included in a new data collection. The participant pool included a sample of 403 university students and 354 participants recruited using Amazon Mechanical Turk. Item Response Theory methods - including Differential Item Functioning - were used to assess for the item- and test- level bias across several common self-report measures of psychopathy. Analyses indicated occasional and modest levels of item-level bias, and that some additional female-relevant items merit consideration for inclusion in measures of psychopathy. These findings suggest that current self-report measures of psychopathy may be demonstrating gender-bias and warrant further examination.Keywords: gender, measurement bias, personality, psychopathy
Procedia PDF Downloads 25444 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 29943 Data Security and Privacy Challenges in Cloud Computing
Authors: Amir Rashid
Abstract:
Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud
Procedia PDF Downloads 29942 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing
Authors: Abootaleb Shirvani, Svetlozar Rachev
Abstract:
ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing
Procedia PDF Downloads 8141 The Need of Sustainable Mining: Communities, Government and Legal Mining in Central Andes of Peru
Authors: Melissa R. Quispe-Zuniga, Daniel Callo-Concha, Christian Borgemeister, Klaus Greve
Abstract:
The Peruvian Andes have a high potential for mining, but many of the mining areas overlay with campesino community lands, being these key actors for agriculture and livestock production. Lead by economic incentives, some communities are renting their lands to mining companies for exploration or exploitation. However, a growing number of campesino communities, usually social and economically marginalized, have developed resistance, alluding consequences, such as water pollution, land-use change, insufficient economic compensation, etc. what eventually end up in Socio-Environmental Conflicts (SEC). It is hypothesized that disclosing the information on environmental pollution and enhance the involvement of communities in the decision-making process may contribute to prevent SEC. To assess whether such complains are grounded on the environmental impact of mining activities, we measured the heavy metals concentration in 24 indicative samples from rivers that run across mining exploitations and farming community lands. Samples were taken during the 2016 dry season and analyzed by inductively-coupled-plasma-atomic-emission-spectroscopy. The results were contrasted against the standards of monitoring government institutions (i.e., OEFA). Furthermore, we investigated the water/environmental complains related to mining in the neighboring 14 communities. We explored the relationship between communities and mining companies, via open-ended interviews with community authorities and non-participatory observations of community assemblies. We found that the concentrations of cadmium (0.023 mg/L), arsenic (0.562 mg/L) and copper (0.07 mg/L), surpass the national water quality standards for Andean rivers (0.00025 mg/L of cadmium, 0.15 mg/L of arsenic and 0.01 mg/L of copper). 57% of communities have posed environmental complains, but 21% of the total number of communities were receiving an annual economic benefit from mining projects. However, 87.5% of the communities who had posed complains have high concentration of heavy metals in their water streams. The evidence shows that mining activities tend to relate to the affectation and vulnerability of campesino community water streams, what justify the environmental complains and eventually the occurrence of a SEC.Keywords: mining companies, campesino community, water, socio-environmental conflict
Procedia PDF Downloads 19840 Determinants of Customer Value in Online Retail Platforms
Authors: Mikko Hänninen
Abstract:
This paper explores the effect online retail platforms have on customer behavior and retail patronage through an inductive multi-case study. Existing research on retail platforms and ecosystems generally focus on competition between platform members and most papers maintain a managerial perspective with customers seen mainly as merely one stakeholder of the value-exchange relationship. It is proposed that retail platforms change the nature of customer relationships compared to traditional brick-and-mortar or e-commerce retailers. With online retail platforms such as Alibaba, Amazon and Rakuten gaining increasing traction with their platform based business models, the purpose of this paper is to define retail platforms and look at how leading retail platforms are able to create value for their customers, in order to foster meaningful customer’ relationships. An analysis is conducted on the major global retail platforms with a focus specifically on understanding the tools in place for creating customer value in order to show how retail platforms create and maintain customer relationships for fostering customer loyalty. The results describe the opportunities and challenges retailers face when competing against platform based businesses and outline the advantages as well as disadvantages that platforms bring to individual consumers. Based on the inductive case research approach, five theoretical propositions on consumer behavior in online retail platforms are developed that also form the basis of further research with this research making both a practical as well as theoretical contribution to platform research streams.Keywords: retail, platform, ecosystem, e-commerce, loyalty
Procedia PDF Downloads 28339 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 11338 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao
Abstract:
Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness
Procedia PDF Downloads 8137 Sustainable Tourism Development and Attitudes of Local Residents: A Case Study of Backo Podunavlje Biosphere Reserve, Serbia
Authors: Sanja Obradovic, Vladimir Stojanovic
Abstract:
The purpose of this paper is to examine the attitudes of residents toward sustainable tourism development in the Bačko Podunavlje Biosphere Reserve (BPBR) in northwestern Serbia. BPBR is a part of 'the European Amazon', world's first five-country Transboundary UNESCO Biosphere Reserve 'Mura-Drava-Danube'. Sustainable tourism development requires the engagement of local residents. Within the initial stage of tourism development, it is important to address residents' attitudes from the early beginning, thus further involve the local community through all phases of development, which in return will largely influence overall success. Data were collected through in-person (face-to-face) questionnaire. The research also addresses the quality of the sustainable tourism attitude scale (SUS-TAS), perceived as an instrument to measure local communities' attitudes towards sustainable tourism development. SUS-TAS has seven variables, which are named as environmental sustainability, perceived social cost, long-term planning, perceived economic benefit, community center economy, ensuring visitor satisfaction, and maximizing community participation. Data were analyzed using SPSS. Findings indicate that residents have a positive attitude toward the development of sustainable tourism in the BPBR. They also recognized the importance of environmental sustainability and preservation for future generations. The study shows that BPBR has a very good community to support sustainable tourism activities in each area considered.Keywords: biosphere reserve, local resident's attitude, sustainable tourism attitude scale, SUS-TAS, sustainable tourism
Procedia PDF Downloads 12936 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 11635 Potential of Pyrolytic Tire Char Use in Agriculture
Authors: M. L. Moyo
Abstract:
Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.
Procedia PDF Downloads 12234 Wastewater Treatment in the Abrasives Industry via Fenton and Photo-Fenton Oxidation Processes: A Case Study from Peru
Authors: Hernan Arturo Blas López, Gustavo Henndel Lopes, Antonio Carlos Silva Costa Teixeira, Carmen Elena Flores Barreda, Patricia Araujo Pantoja
Abstract:
Phenols are toxic for life and the environment and may come from many sources. Uncured phenolic monomers present in phenolic resins used as binders in grinding wheels and emery paper can contaminate industrial wastewaters in abrasives manufacture plants. Furthermore, vestiges of resol and novolacs resins generated by wear and tear of abrasives are also possible sources of water contamination by phenolics in these facilities. Fortunately, advanced oxidation by dark Fenton and photo-Fenton techniques are capable of oxidizing phenols and their degradation products up to their mineralization into H₂O and CO₂. The maximal allowable concentrations for phenols in Peruvian waterbodies is very low, such that insufficiently treated effluents from the abrasives industry are a potential environmental noncompliance. The current case study highlights findings obtained during the lab-scale application of Fenton’s and photo-assisted Fenton’s chemistries to real industrial wastewater samples from an abrasives manufacture plant in Peru. The goal was to reduce the phenolic content and sample toxicity. For this purpose, two independent variables-reaction time and effect of ultraviolet radiation–were studied as for their impacts on the concentration of total phenols, total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD). In this study, diluted samples (1 L) of the industrial effluent were treated with Fenton’s reagent (H₂O₂ and Fe²⁺ from FeSO₄.H₂O) during 10 min in a photochemical batch reactor (Alphatec RFS-500, Brazil) at pH 2.92. In the case of photo-Fenton tests with ultraviolet lamps of 9 W, UV-A, UV-B and UV-C lamps were evaluated. All process conditions achieved 100% of phenols degraded within 5 minutes. TOC, BOD and COD decreased by 49%, 52% and 86% respectively (all processes together). However, Fenton treatment was not capable of reducing BOD, COD and TOC below a certain value even after 10 minutes, contrarily to photo-Fenton. It was also possible to conclude that the processes here studied degrade other compounds in addition to phenols, what is an advantage. In all cases, elevated effluent dilution factors and high amounts of oxidant agent impact negatively the overall economy of the processes here investigated.Keywords: fenton oxidation, wastewater treatment, phenols, abrasives industry
Procedia PDF Downloads 31433 Entrepreneur Universal Education System: Future Evolution
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.Keywords: virtual education, academic degree, certificates, internship, amazon web services, Microsoft Azure, Google Cloud Platform, hybrid models
Procedia PDF Downloads 9632 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 15631 Digital Platforms: Creating Value through Network Effects under Pandemic Conditions
Authors: S. Łęgowik-Świącik
Abstract:
This article is a contribution to the research into the determinants of value creation via digital platforms in variable operating conditions. The dynamics of the market environment caused by the COVID-19 pandemic have made enterprises built on digital platforms financially successful. While many classic companies are struggling with the uncertainty of conducting a business and difficulties in the process of value creation, digital platforms create value by modifying the existing business model to meet the changing needs of customers. Therefore, the objective of this publication is to understand and explain the relationship between value creation and the conversion of the business model built on digital platforms under pandemic conditions. The considerations relating to the conceptual framework and determining the research objective allowed for adopting the hypothesis, assuming that the processes of value creation are evolving, and the measurement of these processes allows for the protection of value created and enables its growth in changing circumstances. The research methods, such as critical literature analysis and case study, were applied to accomplish the objective pursued and verify the hypothesis formulated. The empirical research was carried out based on the data from enterprises listed on the Nasdaq Stock Exchange: Amazon, Alibaba, and Facebook. The research period was the years 2018-2021. The surveyed enterprises were chosen based on the targeted selection. The problem discussed is important and current since the lack of in-depth theoretical research results in few attempts to identify the determinants of value creation via digital platforms. The above arguments led to an attempt at theoretical analysis and empirical research to fill in the gap perceived by deepening the understanding of the process of value creation through network effects via digital platforms under pandemic conditions.Keywords: business model, digital platforms, enterprise management, pandemic conditions, value creation process
Procedia PDF Downloads 12830 Development of an Aerosol Protection Capsule for Patients with COVID-19
Authors: Isomar Lima da Silva, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto
Abstract:
Biological isolation capsules are equipment commonly used in the control and prevention of infectious diseases in the hospital environment. This type of equipment, combined with pre-established medical protocols, contributes significantly to the containment of highly transmissible pathogens such as COVID-19. Due to its hermetic isolation, it allows more excellent patient safety, protecting companions and the health team. In this context, this work presents the development, testing, and validation of a medical capsule to treat patients affected by COVID-19. To this end, requirements such as low cost and easy handling were considered to meet the demand of people infected with the virus in remote locations in the Amazon region and/or where there are no ICU beds and mechanical ventilators for orotracheal intubation. Conceived and developed in a partnership between SAMEL Planos de Saúde and Instituto Conecthus, the device entitled "Vanessa Capsule" was designed to be used together with the NIV protocol (non-invasive ventilation), has an automatic exhaust system and filters performing the CO2 exchange, in addition to having BiPaps ventilatory support equipment (mechanical fans) in the Cabin Kit. The results show that the degree of effectiveness in protecting against infection by aerosols, with the protection cabin, is satisfactory, implying the consideration of the Vanessa capsule as an auxiliary method to be evaluated by the health team. It should also be noted that the medical observation of the evaluated patients found that the treatment against the COVID-19 virus started earlier with non-invasive mechanical ventilation reduces the patient's suffering and contributes positively to their recovery, in association with isolation through the Vanessa capsule.Keywords: COVID-19, mechanical ventilators, medical capsule, non-invasive ventilation
Procedia PDF Downloads 8429 Lexicographic Rules on the Use of Technologies for Realization of the National Signs-Terms Inventory of Cultural Heritage Field in Libras
Authors: Gláucio de Castro Júnior, Daniela Prometi, Patrícia Tuxi
Abstract:
The project 'Inventory Signs-terms of the cultural heritage field in Libras' provides for the establishment of an inventory of signs, terms relating to the field of cultural heritage in Libras, from the results of research in progress as the pilot project' Accessibility Communication, Translation and Interpretation to the Application Portal Libras Heritage 'and the Pilot Project' registration-signal terms for the preparation of bilingual lexicon Libras / Portuguese terms available in the Portal Heritage. The project's goal is to spread the lexicographical rules on the use of technologies in video graphic records of sign language and foster the training of undergraduate students and graduate to the registration of the linguistic diversity of Libras through social and communicative interaction with the community deaf and enable access to Deaf information relating to the field of cultural heritage in Libras. As a result, we expect the spread of the inventory of cultural heritage-signs in terms Libras in application usage 'Portal Heritage'. To achieve the proposed objectives are accomplished technical consulting and continuous training for the production of academic material through theoretical and practical meetings, taught by experts Libras LIP / UNB in partnership with some institutions. The Inventory project signals-Terms under Heritage in Libras field initially took place in Rio de Janeiro in order to allow its development in the Midwest region, due to technical, elected some cities in Brazil, including Manaus in Amazon Macapa in Amapa, Salvador Bahia, Goiás and Goiânia in Florianopolis in Santa Catarina. At the end of all this process, the assessment by preparing a technical report presenting all the advances and points achieved in the project looking for social improvement, economic, environmental and language in the use of technology will be conducted.Keywords: signs-terms, equity-cultural accessibility, technology, sign language
Procedia PDF Downloads 41928 Implications of Oxidative Stress for Monoterpenoid Oxindole Alkaloid Production in Uncaria tomentosa Cultures
Authors: Ana C. Ramos Valdivia, Ileana Vera-Reyes, Ariana A. Huerta-Heredia
Abstract:
The conditions of biotic and abiotic stress in plants can lead to the generation of high amounts of reactive oxygen species (ROS), which leads through a signaling cascade and second messengers to different antioxidant defense responses including the production of secondary metabolites. A limited number of species of plants like Uncaria tomentosa (cat claw) typical of the Amazon region produce monoterpenoid oxindole alkaloids (MOA) such as isopteropodine, mitraphylline, rhynchophylline and its isomers. Moreover, in cultivated roots, the glucoindole alkaloid 3α-dihydrocadambine (DHC) is also accumulated. Several studies have demonstrated that MAO has antioxidant properties and possess important pharmacological activities such as antitumor and immunostimulant while DHC, has hypotensive and hypolipidemic effects. In order the study the regulatory concerns operating in MAO production, the links between oxidative stress and antioxidant alkaloid production in U. tomentosa root cultures were examined. Different amount of hydrogen peroxide between 0.2 -1.0 mM was added to 12 days old roots cultures showing that, this substance had a differential effect on the production of DHC and MOA whereas the viability remained in 80% after six days. Addition of 0.2 mM hydrogen peroxide increased approximately 65% MAO and DHC production (0,540 ± 0.018 and 0.618 ± 0.029 mg per g dry weight, respectively) relative to the control. On contrast, after the addition of 0.6 mM and 1 mM hydrogen peroxide, DHC accumulation into the roots gradually decreased to 53% and 93% respectively, without changes in MAO concentration, which was in relation to a twice increase of the intracellular hydrogen peroxide content. On the other hand, concentrations of DHC (0.1, 0.5 and 1.0 mM in methanol) demonstrated free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The calculated IC50 for all tested concentrations was 0.180 mg per ml (0.33 mM) while the calculated TE50 was 276 minutes. Our results suggest that U. tomentosa root cultures both MAO and DHC have antioxidant capacities and respond to oxidative stress with a stimulation of their production; however, in presence of a higher concentration of ROS into the roots, DHC could be oxidized.Keywords: monoterpenoid indole alkaloid, oxidative stress, root cultures, uncaria tomentosa
Procedia PDF Downloads 18227 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 103