Search results for: particle union optimization algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7939

Search results for: particle union optimization algorithm

7879 Influence of Optimization Method on Parameters Identification of Hyperelastic Models

Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda

Abstract:

This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.

Keywords: particle swarm optimization, identification, hyperelastic, model

Procedia PDF Downloads 149
7878 Recursive Doubly Complementary Filter Design Using Particle Swarm Optimization

Authors: Ju-Hong Lee, Ding-Chen Chung

Abstract:

This paper deals with the optimal design of recursive doubly complementary (DC) digital filter design using a metaheuristic based optimization technique. Based on the theory of DC digital filters using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the phase response errors of the designed DAFs. To deal with the stability of the recursive DC filters during the design process, we can either impose some necessary constraints on the phases of the recursive DAFs. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a population based stochastic optimization approach. The resulting DC digital filters can possess satisfactory frequency response. Simulation results are presented for illustration and comparison.

Keywords: doubly complementary, digital all-pass filter, weighted least squares algorithm, particle swarm optimization

Procedia PDF Downloads 660
7877 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System

Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia

Abstract:

Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.

Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID

Procedia PDF Downloads 55
7876 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 527
7875 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 222
7874 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 340
7873 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 234
7872 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 68
7871 Comparative Analysis of Two Different Ant Colony Optimization Algorithm for Solving Travelling Salesman Problem

Authors: Sourabh Joshi, Tarun Sharma, Anurag Sharma

Abstract:

Ant Colony Optimization is heuristic Algorithm which has been proven a successful technique applied on number of combinatorial optimization problems. Two variants of Ant Colony Optimization algorithm named Ant System and Max-Min Ant System are implemented in MATLAB to solve travelling Salesman Problem and the results are compared. In, this paper both systems are analyzed by solving the some Travelling Salesman Problem and depict which system solve the problem better in term of cost and time.

Keywords: Ant Colony Optimization, Travelling Salesman Problem, Ant System, Max-Min Ant System

Procedia PDF Downloads 459
7870 Global Optimization Techniques for Optimal Placement of HF Antennas on a Shipboard

Authors: Mustafa Ural, Can Bayseferogulari

Abstract:

In this work, radio frequency (RF) coupling between two HF antennas on a shipboard platform is minimized by determining an optimal antenna placement. Unlike the other works, the coupling is minimized not only at single frequency but over the whole frequency band of operation. Similarly, GAO and PSO, are used in order to determine optimal antenna placement. Throughout this work, outputs of two optimization techniques are compared with each other in terms of antenna placements and coupling results. At the end of the work, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage in order to see that.

Keywords: electromagnetic compatibility, antenna placement, optimization, genetic algorithm optimization, particle swarm optimization

Procedia PDF Downloads 209
7869 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 160
7868 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 319
7867 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 285
7866 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller

Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan

Abstract:

Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.

Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller

Procedia PDF Downloads 462
7865 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 586
7864 An Improved Many Worlds Quantum Genetic Algorithm

Authors: Li Dan, Zhao Junsuo, Zhang Wenjun

Abstract:

Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm.

Keywords: quantum genetic algorithm, many worlds, quantum training operator, combinatorial optimization operator

Procedia PDF Downloads 717
7863 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 411
7862 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 353
7861 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL

Procedia PDF Downloads 359
7860 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 485
7859 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 286
7858 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions

Procedia PDF Downloads 254
7857 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 234
7856 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude Control, Flexible Satellite, Particle Swarm Optimization, PID Controller and Optimization

Procedia PDF Downloads 375
7855 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 361
7854 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 593
7853 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator

Procedia PDF Downloads 816
7852 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 479
7851 Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets

Authors: Hichem Kmimech, Achref Jabeur Telmoudi, Lotfi Nabli

Abstract:

The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach.

Keywords: marking, production system, labeled Petri nets, particle swarm optimization

Procedia PDF Downloads 156
7850 Genetic Algorithm Optimization of Microcantilever Based Resonator

Authors: Manjula Sutagundar, B. G. Sheeparamatti, D. S. Jangamshetti

Abstract:

Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency.

Keywords: MEMS resonator, genetic algorithm, modelling and simulation, optimization

Procedia PDF Downloads 527