Search results for: grid connected PV Array
2981 An Automated Sensor System for Cochlear Implants Electrode Array Insertion
Authors: Lei Hou, Xinli Du, Nikolaos Boulgouris
Abstract:
A cochlear implant, referred to as a CI, is a small electronic device that can provide direct electrical stimulation to the auditory nerve. During cochlear implant surgery, atraumatic electrode array insertion is considered to be a crucial step. However, during implantation, the mechanical behaviour of an electrode array inside the cochlea is not known. The behaviour of an electrode array inside of the cochlea is hardly identified by regular methods. In this study, a CI electrode array capacitive sensor system is proposed. It is able to automatically determine the array state as a result of the capacitance variations. Instead of applying sensors to the electrode array, the capacitance information from the electrodes will be gathered and analysed. Results reveal that this sensing method is capable of recognising different states when fed into a pre-shaped model.Keywords: cochlear implant, electrode, hearing preservation, insertion force, capacitive sensing
Procedia PDF Downloads 2382980 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3602979 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)
Procedia PDF Downloads 5072978 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode
Authors: Dalia Salem, Detlef Schulz
Abstract:
As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation
Procedia PDF Downloads 702977 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
Authors: Malinwo Estone Ayikpa
Abstract:
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance
Procedia PDF Downloads 3322976 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization
Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal
Abstract:
This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.Keywords: thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.
Procedia PDF Downloads 4432975 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids
Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann
Abstract:
The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control
Procedia PDF Downloads 2672974 Modeling and Power Control of DFIG Used in Wind Energy System
Authors: Nadia Ben Si Ali, Nadia Benalia, Nora Zerzouri
Abstract:
Wind energy generation has attracted great interests in recent years. Doubly Fed Induction Generator (DFIG) for wind turbines are largely deployed because variable-speed wind turbines have many advantages over fixed-speed generation such as increased energy capture, operation at maximum power point, improved efficiency, and power quality. This paper presents the operation and vector control of a Doubly-fed Induction Generator (DFIG) system where the stator is connected directly to a stiff grid and the rotor is connected to the grid through bidirectional back-to-back AC-DC-AC converter. The basic operational characteristics, mathematical model of the aerodynamic system and vector control technique which is used to obtain decoupled control of powers are investigated using the software Mathlab/Simulink.Keywords: wind turbine, Doubly Fed Induction Generator, wind speed controller, power system stability
Procedia PDF Downloads 3792973 Reactive Power Control Strategy for Z-Source Inverter Based Reconfigurable Photovoltaic Microgrid Architectures
Authors: Reshan Perera, Sarith Munasinghe, Himali Lakshika, Yasith Perera, Hasitha Walakadawattage, Udayanga Hemapala
Abstract:
This research presents a reconfigurable architecture for residential microgrid systems utilizing Z-Source Inverter (ZSI) to optimize solar photovoltaic (SPV) system utilization and enhance grid resilience. The proposed system addresses challenges associated with high solar power penetration through various modes, including current control, voltage-frequency control, and reactive power control. It ensures uninterrupted power supply during grid faults, providing flexibility and reliability for grid-connected SPV customers. Challenges and opportunities in reactive power control for microgrids are explored, with simulation results and case studies validating proposed strategies. From a control and power perspective, the ZSI-based inverter enhances safety, reduces failures, and improves power quality compared to traditional inverters. Operating seamlessly in grid-connected and islanded modes guarantees continuous power supply during grid disturbances. Moreover, the research addresses power quality issues in long distribution feeders during off-peak and night-peak hours or fault conditions. Using the Distributed Static Synchronous Compensator (DSTATCOM) for voltage stability, the control objective is nighttime voltage regulation at the Point of Common Coupling (PCC). In this mode, disconnection of PV panels, batteries, and the battery controller allows the ZSI to operate in voltage-regulating mode, with critical loads remaining connected. The study introduces a structured controller for Reactive Power Controlling mode, contributing to a comprehensive and adaptable solution for residential microgrid systems. Mathematical modeling and simulations confirm successful maximum power extraction, controlled voltage, and smooth voltage-frequency regulation.Keywords: reconfigurable architecture, solar photovoltaic, microgrids, z-source inverter, STATCOM, power quality, battery storage system
Procedia PDF Downloads 82972 Role of Power Electronics in Grid Integration of Renewable Energy Systems
Authors: M. N. Tandjaoui, C. Banoudjafar, C. Benachaiba, O. Abdelkhalek, A. Kechich
Abstract:
Advanced power electronic systems are deemed to be an integral part of renewable, green, and efficient energy systems. Wind energy is one of the renewable means of electricity generation that is now the world’s fastest growing energy source can bring new challenges when it is connected to the power grid due to the fluctuation nature of the wind and the comparatively new types of its generators. The wind energy is part of the worldwide discussion on the future of energy generation and use and consequent effects on the environment. However, this paper will introduce some of the requirements and aspects of the power electronic involved with modern wind generation systems, including modern power electronics and converters, and the issues of integrating wind turbines into power systems.Keywords: power electronics, renewable energy, smart grid, green energy, power technology
Procedia PDF Downloads 6542971 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 762970 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control
Procedia PDF Downloads 3382969 Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.Keywords: incremental conductance algorithm, modeling of PV panel, perturb and observe algorithm, photovoltaic system and simulation results
Procedia PDF Downloads 5092968 Overview of Smart Grid Applications in Turkey
Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural
Abstract:
Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.Keywords: energy efficiency, smart grids, smart home, applications
Procedia PDF Downloads 4982967 Micro Grids, Solution to Power Off-Grid Areas in Pakistan
Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir
Abstract:
In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.Keywords: micro grids, distribution generation, PV, off-grid operations
Procedia PDF Downloads 3122966 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners
Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda
Abstract:
In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner
Procedia PDF Downloads 1572965 Domination Parameters of Middle Graphs: Connected and Outer-Connected Perspectives
Authors: Behnaz Pahlousay, Farshad Kazemnejad, Elisa Palezzato, Michele Torielli
Abstract:
In this paper, we study the notions of connected domination number and of outer-connected domination number for middle graphs. Indeed, we obtain tight bounds for these numbers in terms of the order of the middle graph M(G). We also compute the outer-connected domination number of some families of graphs such as star graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and some operation on graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the outer-connected domination number of middle graphs.Keywords: connected domination number, outer-connected dom- ination number, domination number, middle graph, nordhaus- gaddum-like relation.
Procedia PDF Downloads 372964 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks
Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell
Abstract:
A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1×8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.Keywords: mm-wave communications, multi-sector array, patch antenna, small cell networks
Procedia PDF Downloads 1572963 PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication
Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, Shivesh Tripathi, V. S. Tripathi
Abstract:
In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication.Keywords: antenna, array, reconfigurable, vehicular
Procedia PDF Downloads 2562962 Design of Single Phase Smart Energy Meter and Grid Tied Inverter for Smart Grid
Authors: Hamza Arif, Haroon Javaid
Abstract:
Based on hybrid energy concept of smart grid to synchronize and monitor power being generated at the user end. The ATMEGA328p controller of arduino is used as a processor unit that sends wireless data between user and power utility through NRF24L01 wireless modules. Current and potential transformer circuit are designed to sense the voltage and current at the utility and power being generated at the user end through solar panel. They are designed to interface with the arduino. The approach is used to demonstrate the concept of smart grid and to facilitate for further advancements in the field of smart grid technology. A PWM (Pulse Width Modulation) technique is used to synchronize the user output power with the utility supplier.Keywords: smart grid, hybrid energy, grid tied inverter, PWM
Procedia PDF Downloads 212961 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System
Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam
Abstract:
Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)
Procedia PDF Downloads 3572960 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer
Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah
Abstract:
In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control
Procedia PDF Downloads 3632959 Hybrid Antenna Array with the Bowtie Elements for Super-Resolution and 3D Scanning Radars
Authors: Somayeh Komeylian
Abstract:
The antenna arrays for the entire 3D spherical coverage have been developed for their potential use in variety of applications such as radars and body-worn devices of the body area networks. In this study, we have rigorously revamped the hybrid antenna array using the optimum geometry of bowtie elements for achieving a significant improvement in the angular discrimination capability as well as in separating two adjacent targets. In this scenario, we have analogously investigated the effectiveness of increasing the virtual array length in fostering and enhancing the directivity and angular resolution in the 10 GHz frequency. The simulation results have extensively verified that the proposed antenna array represents a drastic enhancement in terms of size, directivity, side lobe level (SLL) and, especially resolution compared with the other available geometries. We have also verified that the maximum directivities of the proposed hybrid antenna array represent the robustness to the all variations, which is accompanied by the uniform 3D scanning characteristic.Keywords: bowtie antenna, hybrid antenna array, array signal processing, body area networks
Procedia PDF Downloads 1532958 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid
Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani
Abstract:
As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.Keywords: computational grid, job scheduling, learning automata, dynamic scheduling
Procedia PDF Downloads 3432957 Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence
Authors: Md Kamruzzaman, Lyazid Djenidi, R. A. Antonia
Abstract:
This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers ( Rλ ) in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75 mm), (ii) small square perforated grid (mesh size 14 and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Rλ does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number,Rλ,ϲ below which the scaling breaks down is around 25.Keywords: energy spectrum, Taylor microscale, Reynolds number, turbulent kinetic energy, decay exponent
Procedia PDF Downloads 2922956 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern
Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc
Abstract:
The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.Keywords: phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization
Procedia PDF Downloads 5062955 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System
Authors: Safia Bashir, Zulfiqar Memon
Abstract:
During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system
Procedia PDF Downloads 1582954 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 5412953 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm
Authors: Shafqat Ullah Khan, Ammar Nasir
Abstract:
Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays
Procedia PDF Downloads 802952 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas
Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran
Abstract:
Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase
Procedia PDF Downloads 383