Search results for: functional networks
5566 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: data transformation, functional programming, information server, optimization
Procedia PDF Downloads 1565565 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2365564 Use of Social Networks and Mobile Technologies in Education
Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský
Abstract:
Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.Keywords: social networks, motivation, e-learning, mobile technology
Procedia PDF Downloads 3125563 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems
Authors: Nermin Sökmen
Abstract:
An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis
Procedia PDF Downloads 2915562 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 1995561 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2085560 The Impact of Different Social Networks on the Development of Digital Entrepreneurship
Authors: Mohammad Mehdizadeh, Sara Miri
Abstract:
In today's world, competition is one of the essential components of different markets. Therefore, in addition to economic factors, social factors can also affect the development and prosperity of businesses. In this regard, social networks are of particular importance and play a critical role in the flourishing and development of Internet businesses. The purpose of this article is to investigate the effect of different social networks in promoting digital entrepreneurship. The research method is the descriptive survey. The results show that social networks have a positive and significant impact on digital entrepreneurship development. Among the social networks studied, Instagram and Facebook have the most positive effect on digital entrepreneurship.Keywords: entrepreneurship, Facebook, Instagram, social media
Procedia PDF Downloads 3485559 Existence Theory for First Order Functional Random Differential Equations
Authors: Rajkumar N. Ingle
Abstract:
In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon
Procedia PDF Downloads 5005558 The Impact of Malicious Attacks on the Performance of Routing Protocols in Mobile Ad-Hoc Networks
Authors: Habib Gorine, Rabia Saleh
Abstract:
Mobile Ad-Hoc Networks are the special type of wireless networks which share common security requirements with other networks such as confidentiality, integrity, authentication, and availability, which need to be addressed in order to secure data transfer through the network. Their routing protocols are vulnerable to various malicious attacks which could have a devastating consequence on data security. In this paper, three types of attacks such as selfish, gray hole, and black hole attacks have been applied to the two most important routing protocols in MANET named dynamic source routing and ad-hoc on demand distance vector in order to analyse and compare the impact of these attacks on the Network performance in terms of throughput, average delay, packet loss, and consumption of energy using NS2 simulator.Keywords: MANET, wireless networks, routing protocols, malicious attacks, wireless networks simulation
Procedia PDF Downloads 3195557 Upgrading along Value Chains: Strategies for Thailand's Functional Milk Industry
Authors: Panisa Harnpathananun
Abstract:
This paper is 'Practical Experience Analysis' which aims to analyze critical obstacles hampering the growth of the functional milk industry and suggest recommendations to overcome those obstacles. Using the Sectoral Innovation System (SIS) along value chain analysis, it is found that restriction in regulation of milk disinfection process, difficulty of dairy entrepreneurs for health claim approval of functional food and beverage and lack of intermediary between entrepreneurs and certified units for certification of functional foods and milk are major causes that needed to be resolved. Consequently, policy recommendations are proposed to tackle the problems occurring throughout the value chain. For the upstream, a collaborative platform using the quadruple helix model is proposed in a pattern of effective dairy cooperatives. For the midstream, regulation issues of new process, extended shelf life (ESL) milk, or prolonged milk are necessary, which can be extended the global market opportunity. For the downstream, mechanism of intermediary between entrepreneurs and certified units can be assisted in certified process of functional milk, especially a process of 'health claim' approval.Keywords: Thailand, functional milk, supply chain, quadruple helix, intermediary, functional food
Procedia PDF Downloads 1475556 Effect of Migraine on Functional Performance and Reported Symptoms in Children with Concussion
Authors: Abdulaziz Alkathiry
Abstract:
Concussion is a common brain injury that affect physical and cognitive performance. While several studies indicated that adolescents are more likely to develop concussion, in the last decade concussion has been mainly explored in adults. Migraine has been identified as a common symptom reported after concussion and was tied with worse prognoses. Hence, we aimed to investigate the effect of migraine on functional performance and self-reported symptoms in children with concussion. This cross-sectional study involved 35 symptomatic children aged 9 – 17 years recruited within 1 year from their concussion injury at a tertiary balance center. Participants’ symptoms and functional performance were assessed using the post-concussion symptoms scale (PCSS) and the functional gait assessment (FGA) respectively. Concussed children with migraine showed significantly worse symptoms including fatigue, sleeping impairment, difficulty concentrating, and visual problems (P < 0.05). Functional performance didn’t show differences between concussed children with and without migraine. Although concussed children with and without migraine didn’t show any differences on functional performance, worse cognitive symptoms were found in concussed children with migraine. A customized treatment approach is indicated in the presence of migraine for the management of children with concussion. Keywords: Concussion; Migraine; Balance; Post-Concussion Symptoms Scale; Functional Gait AssessmentKeywords: concussion, migraine, post-concussion symptoms scale, functional gait assessment, balance
Procedia PDF Downloads 3435555 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.Keywords: complexity, interbank networks, multilayer networks, network analysis
Procedia PDF Downloads 2805554 An Approach for Multilayered Ecological Networks
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Although networks provide a powerful approach to the study of a wide variety of ecological systems, their formulation usually does not include various types of interactions, interactions that vary in space and time, and interconnected systems such as networks. The emerging field of 'multilayer networks' provides a natural framework for extending ecological systems analysis to include these multiple layers of complexity as it specifically allows for differentiation and modeling of intralayer and interlayer connectivity. The structure provides a set of concepts and tools that can be adapted and applied to the ecology, facilitating research in high dimensionality, heterogeneous systems in nature. Here, ecological multilayer networks are formally defined based on a review of prior and related approaches, illustrates their application and potential with existing data analyzes, and discusses limitations, challenges, and future applications. The integration of multilayer network theory into ecology offers a largely untapped potential to further address ecological complexity, to finally provide new theoretical and empirical insights into the architecture and dynamics of ecological systems.Keywords: ecological networks, multilayered networks, sea ecology, Brazilian Coastal Area
Procedia PDF Downloads 1545553 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects
Authors: Diego De Almeida Pereira, Diana Borchenko
Abstract:
Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.Keywords: environmental psychology, architecture, neural networks, human and social well-being
Procedia PDF Downloads 4945552 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 3705551 Spatial Resilience of the Ageing Population in the Romanian Functional Urban Areas
Authors: Marinela Istrate, Ionel Muntele, Alexandru Bănică
Abstract:
The authors propose the identification, analysis and prognosis of the quantitative and qualitative evolution of the elderly population in the functional urban areas. The present paper takes into account the analysis of some representative indicators (the weight of the elderly population, ageing index, dynamic index of economic ageing of productive population etc.) and the elaboration of an integrated indicator that would help differentiate the population ageing forms in the 48 functional urban areas that were defined based on demographic and social-economic criteria for all large and medium cities in Romania.Keywords: ageing, demographic transition, functional urban areas, spatial resilience
Procedia PDF Downloads 3505550 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-de Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication.Keywords: chaotic laser, network, star topology, synchronization
Procedia PDF Downloads 5635549 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.Keywords: ISA, neural network, Brain Float-16, DUT
Procedia PDF Downloads 915548 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 4175547 Design of Functional Safe Motor Control Systems in Automotive Applications
Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.Keywords: AUTOSAR, MDPS, Simulink, software component
Procedia PDF Downloads 4115546 Ontology-Based Approach for Temporal Semantic Modeling of Social Networks
Authors: Souâad Boudebza, Omar Nouali, Faiçal Azouaou
Abstract:
Social networks have recently gained a growing interest on the web. Traditional formalisms for representing social networks are static and suffer from the lack of semantics. In this paper, we will show how semantic web technologies can be used to model social data. The SemTemp ontology aligns and extends existing ontologies such as FOAF, SIOC, SKOS and OWL-Time to provide a temporal and semantically rich description of social data. We also present a modeling scenario to illustrate how our ontology can be used to model social networks.Keywords: ontology, semantic web, social network, temporal modeling
Procedia PDF Downloads 3855545 Routing Metrics and Protocols for Wireless Mesh Networks
Authors: Samira Kalantary, Zohre Saatzade
Abstract:
Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis.Keywords: wireless mesh networks, routing protocols, routing metrics, bioinformatics
Procedia PDF Downloads 4525544 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 1395543 Ecological Networks: From Structural Analysis to Synchronization
Authors: N. F. F. Ebecken, G. C. Pereira
Abstract:
Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks
Procedia PDF Downloads 2985542 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications
Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches
Abstract:
Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.Keywords: groundwater monitoring, observation networks, machine learning, madrid
Procedia PDF Downloads 775541 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime
Procedia PDF Downloads 3355540 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get further discussions among the security of SDN virtualization.Keywords: SDN, network, virtualization, security
Procedia PDF Downloads 4275539 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 3375538 Leveraging Deep Q Networks in Portfolio Optimization
Authors: Peng Liu
Abstract:
Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization
Procedia PDF Downloads 315537 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data
Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI
Procedia PDF Downloads 212