Search results for: chest CT imagery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 611

Search results for: chest CT imagery

551 A Consideration on the Offset Frontal Impact Modeling Using Spring-Mass Model

Authors: Jaemoon Lim

Abstract:

To construct the lumped spring-mass model considering the occupants for the offset frontal crash, the SISAME software and the NHTSA test data were used. The data on 56 kph 40% offset frontal vehicle to deformable barrier crash test of a MY2007 Mazda 6 4-door sedan were obtained from NHTSA test database. The overall behaviors of B-pillar and engine of simulation models agreed very well with the test data. The trends of accelerations at the driver and passenger head were similar but big differences in peak values. The differences of peak values caused the large errors of the HIC36 and 3 ms chest g’s. To predict well the behaviors of dummies, the spring-mass model for the offset frontal crash needs to be improved.

Keywords: chest g’s, HIC36, lumped spring-mass model, offset frontal impact, SISAME

Procedia PDF Downloads 459
550 Limited Ventilation Efficacy of Prehospital I-Gel Insertion in Out-of-Hospital Cardiac Arrest Patients

Authors: Eunhye Cho, Hyuk-Hoon Kim, Sieun Lee, Minjung Kathy Chae

Abstract:

Introduction: I-gel is a commonly used supraglottic advanced airway device in prehospital out-of-hospital cardiac arrest (OHCA) allowing for minimal interruption of continuous chest compression. However, previous studies have shown that prehospital supraglottic airway had inferior neurologic outcomes and survival compared to no advanced prehospital airway with conventional bag mask ventilation. We hypothesize that continuous compression with i-gel as an advanced airway may cause insufficient ventilation compared to 30:2 chest compression with conventional BVM. Therefore, we investigated the ventilation efficacy of i-gel with the initial arterial blood gas analysis in OHCA patients visiting our ER. Material and Method: Demographics, arrest parameters including i-gel insertion, initial arterial blood gas analysis was retrospectively analysed for 119 transported OHCA patients that visited our ER. Linear regression was done to investigate the association with i-gel insertion and initial pCO2 as a surrogate of prehospital ventilation. Result: A total of 52 patients were analysed for the study. Of the patients who visited the ER during OHCA, 24 patients had i-gel insertion and 28 patients had BVM as airway management in the prehospital phase. Prehospital i-gel insertion was associated with the initial pCO2 level (B coefficient 29.9, SE 10.1, p<0.01) after adjusting for bystander CPR, cardiogenic cause of arrest, EMS call to arrival. Conclusion: Despite many limitations to the study, prehospital insertion of i-gel was associated with high initial pCO2 values in OHCA patients visiting our ER, possibly indicating insufficient ventilation with prehospital i-gel as an advanced airway and continuous chest compressions.

Keywords: arrest, I-gel, prehospital, ventilation

Procedia PDF Downloads 335
549 Translation, Cross-Cultural Adaption, and Validation of the Vividness of Movement Imagery Questionnaire 2 (VMIQ-2) to Classical Arabic Language

Authors: Majid Alenezi, Abdelbare Algamode, Amy Hayes, Gavin Lawrence, Nichola Callow

Abstract:

The purpose of this study was to translate and culturally adapt the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2) from English to produce a new Arabic version (VMIQ-2A), and to evaluate the reliability and validity of the translated questionnaire. The questionnaire assesses how vividly and clearly individuals are able to imagine themselves performing everyday actions. Its purpose is to measure individuals’ ability to conduct movement imagery, which can be defined as “the cognitive rehearsal of a task in the absence of overt physical movement.” Movement imagery has been introduced in physiotherapy as a promising intervention technique, especially when physical exercise is not possible (e.g. pain, immobilisation.) Considerable evidence indicates movement imagery interventions improve physical function, but to maximize efficacy it is important to know the imagery abilities of the individuals being treated. Given the increase in the global sharing of knowledge it is desirable to use standard measures of imagery ability across language and cultures, thus motivating this project. The translation procedure followed guidelines from the Translation and Cultural Adaptation group of the International Society for Pharmacoeconomics and Outcomes Research and involved the following phases: Preparation; the original VMIQ-2 was adapted slightly to provide additional information and simplified grammar. Forward translation; three native speakers resident in Saudi Arabia translated the original VMIQ-2 from English to Arabic, following instruction to preserve meaning (not literal translation), and cultural relevance. Reconciliation; the project manager (first author), the primary translator and a physiotherapist reviewed the three independent translations to produce a reconciled first Arabic draft of VMIQ-2A. Backward translation; a fourth translator (native Arabic speaker fluent in English) translated literally the reconciled first Arabic draft to English. The project manager and two study authors compared the English back translation to the original VMIQ-2 and produced the second Arabic draft. Cognitive debriefing; to assess participants’ understanding of the second Arabic draft, 7 native Arabic speakers resident in the UK completed the questionnaire, and rated the clearness of the questions, specified difficult words or passages, and wrote in their own words their understanding of key terms. Following review of this feedback, a final Arabic version was created. 142 native Arabic speakers completed the questionnaire in community meeting places or at home; a subset of 44 participants completed the questionnaire a second time 1 week later. Results showed the translated questionnaire to be valid and reliable. Correlation coefficients indicated good test-retest reliability. Cronbach’s a indicated high internal consistency. Construct validity was tested in two ways. Imagery ability scores have been found to be invariant across gender; this result was replicated within the current study, assessed by independent-samples t-test. Additionally, experienced sports participants have higher imagery ability than those less experienced; this result was also replicated within the current study, assessed by analysis of variance, supporting construct validity. Results provide preliminary evidence that the VMIQ-2A is reliable and valid to be used with a general population who are native Arabic speakers. Future research will include validation of the VMIQ-2A in a larger sample, and testing validity in specific patient populations.

Keywords: motor imagery, physiotherapy, translation and validation, imagery ability

Procedia PDF Downloads 335
548 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 47
547 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 185
546 Developing HRCT Criterion to Predict the Risk of Pulmonary Tuberculosis

Authors: Vandna Raghuvanshi, Vikrant Thakur, Anupam Jhobta

Abstract:

Objective: To design HRCT criterion to forecast the threat of pulmonary tuberculosis. Material and methods: This was a prospective study of 69 patients with clinical suspicion of pulmonary tuberculosis. We studied their medical characteristics, numerous separate HRCT-results, and a combination of HRCT findings to foresee the danger for PTB by utilizing univariate and multivariate investigation. Temporary HRCT diagnostic criteria were planned in view of these outcomes to find out the risk of PTB and tested these criteria on our patients. Results: The results of HRCT chest were analyzed, and Rank was given from 1 to 4 according to the HRCT chest findings. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated. Rank 1: Highly suspected PTB. Rank 2: Probable PTB Rank 3: Nonspecific or difficult to differentiate from other diseases Rank 4: Other suspected diseases • Rank 1 (Highly suspected TB) was present in 22 (31.9%) patients, all of them finally diagnosed to have pulmonary tuberculosis. The sensitivity, specificity, and negative likelihood ratio for RANK 1 on HRCT chest was 53.6%, 100%, and 0.43, respectively. • Rank 2 (Probable TB) was present in 13 patients, out of which 12 were tubercular, and 1 was non-tubercular. • The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of the combination of Rank 1 and Rank 2 was 82.9%, 96.4%, 23.22, and 0.18, respectively. • Rank 3 (Non-specific TB) was present in 25 patients, and out of these, 7 were tubercular, and 18 were non-tubercular. • When all these 3 ranks were considered together, the sensitivity approached 100% however, the specificity reduced to 35.7%. The positive likelihood ratio and negative likelihood ratio were 1.56 and 0, respectively. • Rank 4 (Other specific findings) was given to 9 patients, and all of these were non-tubercular. Conclusion: HRCT is useful in selecting individuals with greater chances of pulmonary tuberculosis.

Keywords: pulmonary, tuberculosis, multivariate, HRCT

Procedia PDF Downloads 172
545 Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task

Authors: Jonathan Ham, Christopher Koch

Abstract:

There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant.

Keywords: odor-color associations, odor imagery, visual attention, inhibition

Procedia PDF Downloads 177
544 Detecting Nitrogen Deficiency and Potato Leafhopper (Hemiptera, Cicadellidae) Infestation in Green Bean Using Multispectral Imagery from Unmanned Aerial Vehicle

Authors: Bivek Bhusal, Ana Legrand

Abstract:

Detection of crop stress is one of the major applications of remote sensing in agriculture. Multiple studies have demonstrated the capability of remote sensing using Unmanned Aerial Vehicle (UAV)-based multispectral imagery for detection of plant stress, but none so far on Nitrogen (N) stress and PLH feeding stress on green beans. In view of its wide host range, geographical distribution, and damage potential, Potato leafhopper- Empoasca fabae (Harris) has been emerging as a key pest in several countries. Monitoring methods for potato leafhopper (PLH) damage, as well as the laboratory techniques for detecting Nitrogen deficiency, are time-consuming and not always easily affordable. A study was initiated to demonstrate if the multispectral sensor attached to a drone can detect PLH stress and N deficiency in beans. Small-plot trials were conducted in the summer of 2023, where cages were used to manipulate PLH infestation in green beans (Provider cultivar) at their first-trifoliate stage. Half of the bean plots were introduced with PLH, and the others were kept insect-free. Half of these plots were grown with the recommended amount of N, and the others were grown without N. Canopy reflectance was captured using a five-band multispectral sensor. Our findings indicate that drone imagery could detect stress due to a lack of N and PLH damage in beans.

Keywords: potato leafhopper, nitrogen, remote sensing, spectral reflectance, beans

Procedia PDF Downloads 61
543 Comparison of Phynotypic Traits of Three Arabian Horse Strains

Authors: Saria Almarzook, Monika Reissmann, Gudrun Brockmann

Abstract:

Due to its history, occurrence in different ecosystems and diverse using, the modern horse (Equus caballus) shows large variability in size, appearance, behavior and habits. At all times, breeders try to create groups (breeds, strains) representing high homology but showing clear differences in comparison to other groups. A great interest of analyzing phenotypic and genetic traits looking for real diversity and genetic uniqueness existents for Arabian horses in Syria. 90 Arabian horses from governmental research center of Arabian horses in Damascus were included. The horses represent three strains (Kahlawi, Saklawi, Hamdani) originated from different geographical zones. They were raised on the same farm, under stable conditions. Twelve phenotypic traits were measured: wither height (WH), croup width (CW), croup height (CH), neck girth (NG), thorax girth (TG), chest girth (ChG), chest depth (ChD), chest width (ChW), back line length (BLL), body length (BL), fore cannon length (FCL) and hind cannon length (HCL). The horses were divided into groups according to age (less than 2 years, 2-4 years, 4-9 years, over 9 years) and to sex (male, female). The statistical analyzes show that age has significant influence of WH while the strain has only a very limited effect. On CW, NG, BLL, FCL and HCL, there is only a significant influence of sex. Age has significant effect on CH and BL. All sources of classes have a significant effect on TG, ChG, ChD and ChW. Strain has a significant effect on the BL. These results provide first information for real biodiversity in and between the strains and can be used to develop the breeding work in the Arabian horse breed.

Keywords: Arabian horse, phenotypic traits, strains, Syria

Procedia PDF Downloads 391
542 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 105
541 A Case of Survival with Self-Draining Haemopericardium Secondary to Stabbing

Authors: Balakrishna Valluru, Ruth Suckling

Abstract:

A 16 year old male was found collapsed on the road following stab injuries to the chest and abdomen and was transported to the emergency department by ambulance. On arrival in the emergency department the patient was breathless and appeared pale. He was maintaining his airway with spontaneous breathing and had a heart rate of 122 beats per minute with a blood pressure of 83/63 mmHg. He was resuscitated initially with three units of packed red cells. Clinical examination identified three incisional wounds each measuring 2 cm. These were in the left para-sternal region, right infra-scapular region and left upper quadrant of the abdomen. The chest wound over the left parasternal area at the level of 4tth intercostal space was bleeding intermittently on leaning forwards and was relieving his breathlessness intermittently. CT imaging was performed to characterize his injuries and determine his management. CT scan of chest and abdomen showed moderate size haemopericardium with left sided haemopneumothorax. The patient underwent urgent surgical repair of the left ventricle and left anterior descending artery. He recovered without complications and was discharged from the hospital. This case highlights the fact that the potential to develop a life threatening cardiac tamponade was mitigated by the left parasternal stab wound. This injury fortuitously provided a pericardial window through which the bleeding from the injured left ventricle and left anterior descending artery could drain into the left hemithorax providing an opportunity for timely surgical intervention to repair the cardiac injuries.

Keywords: stab, incisional, haemo-pericardium, haemo-pneumothorax

Procedia PDF Downloads 203
540 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 128
539 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks

Authors: Mahdi Bazarganigilani

Abstract:

Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.

Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks

Procedia PDF Downloads 164
538 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 100
537 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 499
536 Evaluation of Percutaneous Tube Thoracostomy Performed by Trainee in Both Trauma and Non-Trauma Patients

Authors: Kulsum Maula, Md Kamrul Alam, Md Ibrahim Khalil, Md Nazmul Hasan, Mohammad Omar Faruq

Abstract:

Background: Percutaneous Tube Thoracostomy (PTT) is an invasive procedure that can save a life now and then in different traumatic and non-traumatic conditions. But still, it is an enigma; how our trainee surgeons are at home in this procedure. Objectives: To evaluate the outcome of the percutaneous tube thoracostomy performed by trainees in both trauma and non-trauma patients. Study design: Prospective, Observational Study. The duration of the study was September 2018 to February 2019. Methods: All patients who need PTT in traumatic and non-traumatic conditions were selected by purposive sampling. Thereafter, they were scrutinized according to eligibility criteria and 96 patients were finalized. A pre-tested, observation-based, peer-reviewed data collection sheet was prepared before the study. Data regarding clinical and surgical outcome profiles were recorded. Data were compiled, edited, and analyzed. Results: Among 96 patients, the highest 32.29% belonged to age group 31-40 years and the lowest 9.37% belonged to the age group ≤20. The mean age of the respondents was 29.19±9.81. We found out of 96 patients, 70(72.91%) were indicated PTT for traumatic conditions and the rest 26(27.08%) were indicated PTT for non-traumatic chest conditions, where 36(37.5%) had simple penumothorax, 21(21.87%) haemothorax, 14(14.58%) massive pleural effusion, 13(13.54%) tension pneumothorax, 10(10.41%) haemopneumothorax, and 2(2.08%) had pyothorax respectively. In 53.12% of patients had right-sided intercostal chest tube (ICT) insertion, whereas 46.87% had left-sided ICT insertion. In our study, 89.55 % of the tube was placed at the normal anatomical position. Besides, 10.41% of tube thoracostomy were performed deviated from anatomical site. Among 96 patients 62.5% patients had length of incision 2-3cm, 35.41% had >3cm and 2.08% had <2cm respectively. Out of 96 patients, 75(78.13%) showed uneventful outcomes, whereas 21(21.87%) had complications, including 11.15%(11) each had wound infection, 4.46%(4) subcutaneous emphysema, 4.28%(3) drain auto expulsion, 2.85%(2) hemorrhage, 1.45%(1) had a non-functioning drain and empyema with ascending infection respectively (p=<0.05). Conclusion: PTT is a life-saving procedure that is most frequently implemented in chest trauma patients in our country. In the majority of cases, the outcome of PTT was uneventful (78.13). Besides this, more than one-third of patients had a length of incision more than 3 cm that needed extra stitches and 10.41% of cases of PTT were placed other than the normal anatomical site. Trainees of Dhaka Medical College Hospitals are doing well in their performance of PTT insertion, but still, some anatomical orientations are necessary to avoid operative and post-operative complications.

Keywords: PTT, trainee, trauma, non-chest trauma patients

Procedia PDF Downloads 121
535 Performance and Breeding Potency of Local Buffalo in Kangean Island, Sumenep, East Java, Indonesia

Authors: A. Nurgiartiningsih, G. Ciptadi, S. B. Siswijono

Abstract:

This research was done to identify the performance and breeding potency of Local Buffalo in Kangean Island, Sumenep, East Java, Indonesia. Materials used were buffalo and farmer in Kangean Island. Method used was survey with purposive sampling method. Qualitative trait and existing breeding system including the type of production system were directly observed. Quantitative trait consisted of chest girth, body weight and wither height were measured and recorded. Data were analyzed using analysis of variance applying software GENSTAT 14. Results showed the purposes of buffalo breeding in Kangean Island were for production of calves, saving, religion tradition, and buffalo racing. The combination between grazing and cut and carry system were applied in Kangean Island. Forage, grass and agricultural waste product were available abundantly especially, during the wet season. Buffalo in Kangean Island was categorized as swamp buffalo with 48 chromosomes. Observation on qualitative trait indicated that there were three skin color types: gray (81.25%), red (10.42%) and white/albino (8.33%). Analysis on quantitative trait showed that there was no significant difference between male and female buffalo. The performance of male buffalo was 132.56 cm, 119.33 cm and 174.11 cm, for the mean of body length, whither height and chest girth, respectively. The performance of female buffalo were 129.8 cm, 114.0 cm and 166.2 cm, for mean of body length, wither height and chest girth (CG), respectively. The performance of local buffalo in Kangean Island was categorized well. Kangean Island could be promoted as center of buffalo breeding and conservation. For optimal improvement of population number and its genetics value, government policy in buffalo breeding program should be implemented.

Keywords: chromosome, qualitative trait, quantitative trait, swamp buffalo

Procedia PDF Downloads 269
534 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 136
533 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 52
532 Establishment of Diagnostic Reference Levels for Computed Tomography Examination at the University of Ghana Medical Centre

Authors: Shirazu Issahaku, Isaac Kwesi Acquah, Simon Mensah Amoh, George Nunoo

Abstract:

Introduction: Diagnostic Reference Levels are important indicators for monitoring and optimizing protocol and procedure in medical imaging between facilities and equipment. This helps to evaluate whether, in routine clinical conditions, the median value obtained for a representative group of patients within an agreed range from a specified procedure is unusually high or low for that procedure. This study aimed to propose Diagnostic Reference Levels for Computed Tomography examination of the most common routine examination of the head, chest and abdominal pelvis regions at the University of Ghana Medical Centre. Methods: The Diagnostic Reference Levels were determined based on the investigation of the most common routine examinations, including head Computed Tomography examination with and without contrast, abdominopelvic Computed Tomography examination with and without contrast, and chest Computed Tomography examination without contrast. The study was based on two dose indicators: the volumetric Computed Tomography Dose Index and Dose-Length Product. Results: The estimated median distribution for head Computed Tomography with contrast for volumetric-Computed Tomography dose index and Dose-Length Product were 38.33 mGy and 829.35 mGy.cm, while without contrast, were 38.90 mGy and 860.90 mGy.cm respectively. For an abdominopelvic Computed Tomography examination with contrast, the estimated volumetric-Computed Tomography dose index and Dose-Length Product values were 40.19 mGy and 2096.60 mGy.cm. In the absence of contrast, the calculated values were 14.65 mGy and 800.40 mGy.cm, respectively. Additionally, for chest Computed Tomography examination, the estimated values were 12.75 mGy and 423.95 mGy.cm for volumetric-Computed Tomography dose index and Dose-Length Product, respectively. These median values represent the proposed diagnostic reference values of the head, chest, and abdominal pelvis regions. Conclusions: The proposed Diagnostic Reference Level is comparable to the recommended International Atomic Energy Agency and International Commission Radiation Protection Publication 135 and other regional published data by the European Commission and Regional National Diagnostic Reference Level in Africa. These reference levels will serve as benchmarks to guide clinicians in optimizing radiation dose levels while ensuring accurate diagnostic image quality at the facility.

Keywords: diagnostic reference levels, computed tomography dose index, computed tomography, radiation exposure, dose-length product, radiation protection

Procedia PDF Downloads 59
531 Count of Trees in East Africa with Deep Learning

Authors: Nubwimana Rachel, Mugabowindekwe Maurice

Abstract:

Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.

Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization

Procedia PDF Downloads 77
530 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model

Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson

Abstract:

The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.

Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania

Procedia PDF Downloads 107
529 Geospatial Techniques and VHR Imagery Use for Identification and Classification of Slums in Gujrat City, Pakistan

Authors: Muhammad Ameer Nawaz Akram

Abstract:

The 21st century has been revealed that many individuals around the world are living in urban settlements than in rural zones. The evolution of numerous cities in emerging and newly developed countries is accompanied by the rise of slums. The precise definition of a slum varies countries to countries, but the universal harmony is that slums are dilapidated settlements facing severe poverty and have lacked access to sanitation, water, electricity, good living styles, and land tenure. The slum settlements always vary in unique patterns within and among the countries and cities. The core objective of this study is the spatial identification and classification of slums in Gujrat city Pakistan from very high-resolution GeoEye-1 (0.41m) satellite imagery. Slums were first identified using GPS for sample site identification and ground-truthing; through this process, 425 slums were identified. Then Object-Oriented Analysis (OOA) was applied to classify slums on digital image. Spatial analysis softwares, e.g., ArcGIS 10.3, Erdas Imagine 9.3, and Envi 5.1, were used for processing data and performing the analysis. Results show that OOA provides up to 90% accuracy for the identification of slums. Jalal Cheema and Allah Ho colonies are severely affected by slum settlements. The ratio of criminal activities is also higher here than in other areas. Slums are increasing with the passage of time in urban areas, and they will be like a hazardous problem in coming future. So now, the executive bodies need to make effective policies and move towards the amelioration process of the city.

Keywords: slums, GPS, satellite imagery, object oriented analysis, zonal change detection

Procedia PDF Downloads 136
528 Objective Evaluation on Medical Image Compression Using Wavelet Transformation

Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah

Abstract:

The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.

Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation

Procedia PDF Downloads 286
527 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 81
526 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 131
525 Rainfall Estimation Using Himawari-8 Meteorological Satellite Imagery in Central Taiwan

Authors: Chiang Wei, Hui-Chung Yeh, Yen-Chang Chen

Abstract:

The objective of this study is to estimate the rainfall using the new generation Himawari-8 meteorological satellite with multi-band, high-bit format, and high spatiotemporal resolution, ground rainfall data at the Chen-Yu-Lan watershed of Joushuei River Basin (443.6 square kilometers) in Central Taiwan. Accurate and fine-scale rainfall information is essential for rugged terrain with high local variation for early warning of flood, landslide, and debris flow disasters. 10-minute and 2 km pixel-based rainfall of Typhoon Megi of 2016 and meiyu on June 1-4 of 2017 were tested to demonstrate the new generation Himawari-8 meteorological satellite can capture rainfall variation in the rugged mountainous area both at fine-scale and watershed scale. The results provide the valuable rainfall information for early warning of future disasters.

Keywords: estimation, Himawari-8, rainfall, satellite imagery

Procedia PDF Downloads 194
524 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 144
523 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures

Authors: Marcos Bosques-Perez, Walter Izquierdo, Harold Martin, Liangdon Deng, Josue Rodriguez, Thony Yan, Mercedes Cabrerizo, Armando Barreto, Naphtali Rishe, Malek Adjouadi

Abstract:

Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.

Keywords: big data, image processing, multispectral, principal component analysis

Procedia PDF Downloads 178
522 Non-Uniform Filter Banks-based Minimum Distance to Riemannian Mean Classifition in Motor Imagery Brain-Computer Interface

Authors: Ping Tan, Xiaomeng Su, Yi Shen

Abstract:

The motion intention in the motor imagery braincomputer interface is identified by classifying the event-related desynchronization (ERD) and event-related synchronization ERS characteristics of sensorimotor rhythm (SMR) in EEG signals. When the subject imagines different limbs or different parts moving, the rhythm components and bandwidth will change, which varies from person to person. How to find the effective sensorimotor frequency band of subjects is directly related to the classification accuracy of brain-computer interface. To solve this problem, this paper proposes a Minimum Distance to Riemannian Mean Classification method based on Non-Uniform Filter Banks. During the training phase, the EEG signals are decomposed into multiple different bandwidt signals by using multiple band-pass filters firstly; Then the spatial covariance characteristics of each frequency band signal are computered to be as the feature vectors. these feature vectors will be classified by the MDRM (Minimum Distance to Riemannian Mean) method, and cross validation is employed to obtain the effective sensorimotor frequency bands. During the test phase, the test signals are filtered by the bandpass filter of the effective sensorimotor frequency bands, and the extracted spatial covariance feature vectors will be classified by using the MDRM. Experiments on the BCI competition IV 2a dataset show that the proposed method is superior to other classification methods.

Keywords: non-uniform filter banks, motor imagery, brain-computer interface, minimum distance to Riemannian mean

Procedia PDF Downloads 126