Search results for: building energy modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14343

Search results for: building energy modeling

14283 A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

Authors: Chil-Chyuan Kuo, Chen-Hsuan Tsai

Abstract:

This study presents a cost-effective approach for rapid fabricating modeling platforms utilized in fused deposition modeling system. A small-batch production of modeling platforms about 20 pieces can be obtained economically through silicone rubber mold using vacuum casting without applying the plastic injection molding. The air venting systems is crucial for fabricating modeling platform using vacuum casting. Modeling platforms fabricated can be used for building rapid prototyping model after sandblasting. This study offers industrial value because it has both time-effectiveness and cost-effectiveness.

Keywords: vacuum casting, fused deposition modeling, modeling platform, sandblasting, surface roughness

Procedia PDF Downloads 360
14282 Towards a Sustainable Energy Future: Method Used in Existing Buildings to Implement Sustainable Energy Technologies

Authors: Georgi Vendramin, Aurea Lúcia, Yamamoto, Carlos Itsuo, Souza Melegari, N. Samuel

Abstract:

This article describes the development of a model that uses a method where openings are represented by single glass and double glass. The model is based on a healthy balance equations purely theoretical and empirical data. Simplified equations are derived through a synthesis of the measured data obtained from meteorological stations. The implementation of the model in a design tool integrated buildings is discussed in this article, to better punctuate the requirements of comfort and energy efficiency in architecture and engineering. Sustainability, energy efficiency, and the integration of alternative energy systems and concepts are beginning to be incorporated into designs for new buildings and renovations to existing buildings. Few means have existed to effectively validate the potential performance benefits of the design concepts. It was used a method of degree-days for an assessment of the energy performance of a building showed that the design of the architectural design should always be considered the materials used and the size of the openings. The energy performance was obtained through the model, considering the location of the building Central Park Shopping Mall, in the city of Cascavel - PR. Obtained climatic data of these locations and in a second step, it was obtained the coefficient of total heat loss in the building pre-established so evaluating the thermal comfort and energy performance. This means that the more openings in buildings in Cascavel – PR, installed to the east side, they may be higher because the glass added to the geometry of architectural spaces will cause the environment conserve energy.

Keywords: sustainable design, energy modeling, design validation, degree-days methods

Procedia PDF Downloads 394
14281 Seismic Performance Evaluation of Existing Building Using Structural Information Modeling

Authors: Byungmin Cho, Dongchul Lee, Taejin Kim, Minhee Lee

Abstract:

The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated.

Keywords: existing building, nonlinear analysis, seismic performance, structural information modeling

Procedia PDF Downloads 361
14280 Efficient HVAC System in Green Building Design

Authors: Omid Khabiri, Maryam Ghavami

Abstract:

Buildings designed and built as high performance, sustainable or green are the vanguard in a movement to make buildings more energy efficient and less environmentally harmful. Although Heating, Ventilating, and Air Conditioning (HVAC) systems offer many opportunities for recovery and re-use of thermal energy; however, the amount of energy used annually by these systems typically ranges from 40 to 60 percent of the overall energy consumption in a building, depending on the building design, function, condition, climate, and the use of renewable energy strategies. HVAC systems may also damage the environment by unnecessary use of non-renewable energy sources, which contribute to environmental pollution, and by creating noise and discharge of contaminated water and air containing chemicals, lubricating oils, refrigerants, heat transfer fluids, and particulate (gases matter). In fact, HVAC systems will significantly impact how “green” a building is, where an efficient HVAC system design can result in considerable energy, emissions and cost savings as well as providing increased user thermal comfort. This paper presents the basic concepts of green building design and discusses the role of efficient HVAC system and practical strategies for ensuring high performance sustainable buildings in design and operation.

Keywords: green building, hvac system, design strategies, high-performance equipment, efficient technologies

Procedia PDF Downloads 553
14279 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 132
14278 Uncertainty Assessment in Building Energy Performance

Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud

Abstract:

The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.

Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method

Procedia PDF Downloads 438
14277 Soil Reinforcement by Stone Columns

Authors: Saou Mohamed Amine

Abstract:

The construction industry has been identified as a user of substantial amount of materials and energy resources that has an enormous impact on environment. The energy efficient in refurbishment project is being considered as one of the approaches to achieve sustainability in construction industry. The increasing concern for environment has made building owners and designers to incorporate the energy efficiency features into their building projects.

Keywords: construction industry, design team attributes, energy efficient performance, refurbishment projects characteristics

Procedia PDF Downloads 412
14276 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.

Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 288
14275 Investigation of Passive Solutions of Thermal Comfort in Housing Aiming to Reduce Energy Consumption

Authors: Josiane R. Pires, Marco A. S. González, Bruna L. Brenner, Luciana S. Roos

Abstract:

The concern with sustainability brought the need for optimization of the buildings to reduce consumption of natural resources. Almost 1/3 of energy demanded by Brazilian housings is used to provide thermal solutions. AEC sector may contribute applying bioclimatic strategies on building design. The aim of this research is to investigate the viability of applying some alternative solutions in residential buildings. The research was developed with computational simulation on single family social housing, examining envelope type, absorptance, and insolation. The analysis of the thermal performance applied both Brazilian standard NBR 15575 and degree-hour method, in the scenery of Porto Alegre, a southern Brazilian city. We used BIM modeling through Revit/Autodesk and used Energy Plus to thermal simulation. The payback of the investment was calculated comparing energy savings and building costs, in a period of 50 years. The results shown that with the increment of envelope’s insulation there is thermal comfort improvement and energy economy, with a pay-back period of 24 to 36 years, in some cases.

Keywords: civil construction, design, thermal performance, energy, economic analysis

Procedia PDF Downloads 536
14274 Methodological Approach for Historical Building Retrofit Based on Energy and Cost Analysis in the Different Climatic Zones

Authors: Selin Guleroglu, Ilker Kahraman, E. Selahattin Umdu

Abstract:

In today’s world, the building sector has a significant impact on primary energy consumption and CO₂ emissions. While new buildings must have high energy performance as indicated by the Energy Performance Directive in Buildings (EPBD), published by the European Union (EU), the energy performance of the existing buildings must also be enhanced with cost-efficient methods. Turkey has a high historical building density similar to south European countries, and the high energy consumption is the main contributor in the energy consumptioın of Turkey, which is rather higher than European counterparts. Historic buildings spread around Turkey for four main climate zones covering very similar climate characteristics to both the north and south European countries. The case study building is determined as the most common building type in Turkey. This study aims to investigate energy retrofit measures covering but not limited to passive and active measures to improve the energy performance of the historical buildings located in different climatic zones within the limits of preservation of the historical value of the building as a crucial constraint. Passive measures include wall, window, and roof construction elements, and active measures HVAC systems in retrofit scenarios. The proposed methodology can help to reach up to 30% energy saving based on primary energy consumption. DesignBuilder, an energy simulation tool, is used to determine the energy performance of buildings with suggested retrofit measures, and the Net Present Value (NPV) method is used for cost analysis of them. Finally, the most efficient energy retrofit measures for all buildings are determined by analyzing primary energy consumption and the cost performance of them. Results show that heat insulation, glazing type, and HVAC system has an important role in energy saving. Also, it found that these parameters have a different positive or negative effect on building energy consumption in different climate zones. For instance, low e glazing has a positive impact on the energy performance of the building in the first zone, while it has a negative effect on the building in the forth zone. Another important result is applying heat insulation has minimum impact on building energy performance compared to other zones.

Keywords: energy performance, climatic zones, historic building, energy retrofit measures, NPV

Procedia PDF Downloads 142
14273 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 94
14272 Building Energy Modeling for Networks of Data Centers

Authors: Eric Kumar, Erica Cochran, Zhiang Zhang, Wei Liang, Ronak Mody

Abstract:

The objective of this article was to create a modelling framework that exposes the marginal costs of shifting workloads across geographically distributed data-centers. Geographical distribution of internet services helps to optimize their performance for localized end users with lowered communications times and increased availability. However, due to the geographical and temporal effects, the physical embodiments of a service's data center infrastructure can vary greatly. In this work, we first identify that the sources of variances in the physical infrastructure primarily stem from local weather conditions, specific user traffic profiles, energy sources, and the types of IT hardware available at the time of deployment. Second, we create a traffic simulator that indicates the IT load at each data-center in the set as an approximator for user traffic profiles. Third, we implement a framework that quantifies the global level energy demands using building energy models and the traffic profiles. The results of the model provide a time series of energy demands that can be used for further life cycle analysis of internet services.

Keywords: data-centers, energy, life cycle, network simulation

Procedia PDF Downloads 126
14271 Proposals for the Thermal Regulation of Buildings in Algeria: A New Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The thermal building regulation is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years, and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean region

Procedia PDF Downloads 119
14270 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere

Authors: Yulia A. Kononova, Znang X. Ning

Abstract:

Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.

Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house

Procedia PDF Downloads 241
14269 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 363
14268 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory

Procedia PDF Downloads 353
14267 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 375
14266 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 306
14265 A Pedagogical Study of Computational Design in a Simulated Building Information Modeling-Cloud Environment

Authors: Jaehwan Jung, Sung-Ah Kim

Abstract:

Building Information Modeling (BIM) provides project stakeholders with various information about property and geometry of entire component as a 3D object-based parametric building model. BIM represents a set of Information and solutions that are expected to improve collaborative work process and quality of the building design. To improve collaboration among project participants, the BIM model should provide the necessary information to remote participants in real time and manage the information in the process. The purpose of this paper is to propose a process model that can apply effective architectural design collaborative work process in architectural design education in BIM-Cloud environment.

Keywords: BIM, cloud computing, collaborative design, digital design education

Procedia PDF Downloads 405
14264 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality

Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez

Abstract:

Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.

Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement

Procedia PDF Downloads 90
14263 Windcatcher as Sustainable Solution for Natural Ventilation in Hot Arid Regions: A Case Study of Saudi Arabia

Authors: Payam Nejat, Fatemeh Jomehzadeh, Muhamad Zaimi Abd. Majid, Mohd.Badruddin Yusof, Hasrul Haidar Ismail

Abstract:

Currently, building energy consumption has become an international issue especially in developing countries such as Saudi Arabia. In Saudi Arabia 14% of total final energy consumption is utilized in the building sector. Due to hot arid climate, 60% of total building energy consumption in this country is associated with cooling systems. In addition in 2011, this country was one of top ten CO2 emitting countries which illustrate the significance of renewable resources to sustaining the energy consumption. Wind as an important renewable energy can play a prominent role to supply natural ventilation inside the building and windcatcher as a traditional technique can be implemented for this purpose. In this paper the different types of windcatchers, its performance and function was reviewed. It can be concluded due high temperature and low humidity in most area of Saudi Arabia this technique can be successfully be employed and help to reduce fossil energy consumption and related CO2 emissions.

Keywords: natural ventilation, windcatcher, wind, badgir

Procedia PDF Downloads 572
14262 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 335
14261 Measurement and Research of Green Office Building Operational Performance in China: A Case Study of a Green Office Building in Zhejiang Province

Authors: Xuechen Gui, Jian Ge, Senmiao Li

Abstract:

In recent years, green buildings in China have been developing rapidly and have developed into a wide variety of types, of which office building is a very important part. In many green office buildings, the energy consumption of building operation is high; the indoor environment quality needs to be improved, and the level of occupants’ satisfaction is low. This paper conducted a one-year measurement of operational performance of a green office building in Zhejiang Province. The measurement includes energy consumption of the building's one-year operation, the quality of the indoor environment and occupants’ satisfaction in different seasons. The energy consumption is collected from the power bureau. The quality of the indoor environment have been measured at different measuring points including offices, meeting rooms and reception for the whole year. The satisfaction of occupants are obtained from questionnaires. The results are compared with given standards and goals and the reasons why occupants are dissatisfied with the indoor environment are analyzed. Regarding energy consumption, the energy consumption of the building operational performance is much higher than the standard. Regarding the indoor environment, the temperature and humidity meet the standard for most of the time, but fine particulate matter (PM2.5) concentration is pretty high. Regarding occupants satisfaction, occupants have a higher expectation for indoor air quality even when the indoor air quality is well and occupants prefer a relatively humid environment. However the overall satisfaction is more than 80%, which indicates that occupants have a higher tolerability.

Keywords: green office building, energy consumption, indoor environment quality, occupants satisfaction, operational performance

Procedia PDF Downloads 151
14260 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida

Authors: K. Thakkar, C. Ghenai

Abstract:

An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.

Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions

Procedia PDF Downloads 423
14259 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 60
14258 Assessment of the Effect of Building Materials on Indoor Comfort and Energy Demand of Residential Buildings in Jos: An Experimental and Numerical Approach

Authors: Selfa Johnson Zwalnan, Nanchen Nimyel Caleb, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the somewhat lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio of external opening area to the area of the external walls). This result shows that the innovative building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: building simulation, solar gain, comfort temperature, temperature, carbon foot print

Procedia PDF Downloads 75
14257 Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral

Authors: Ademuyiwa Agbonyin, Stamatis Zoras, Mohammad Zandi

Abstract:

This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison.

Keywords: historic buildings, energy retrofit, thermal comfort, software modelling, energy modelling

Procedia PDF Downloads 145
14256 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 284
14255 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 273
14254 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 281