Search results for: autonomous agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2083

Search results for: autonomous agents

2023 Autonomous Learning Motivates EFL Students to Learn English at Al Buraimi University College in the Sultanate of Oman: A Case Study

Authors: Yahia A. M. AlKhoudary

Abstract:

This Study presents the outcome of an investigation to evaluate the importance of autonomous learning as a means of motivation. However, very little research done in this field. Thus, the aims of this study are to ascertain the needs of the learners and to investigate their attitudes and motivation towards the mode of learning. Various suggestions made on how to improve learners’ participation in the learning process. A survey conducted on a sample group of 60 Omani College students. Self-report questionnaires and retrospective interviews conducted to find out their material-type preferences in a self-access learning context. Achieving autonomous learning system, which learners is one of the Ministry of Education goals in the Sultanate of Oman. As a result, this study presents the outcome of an investigation to evaluate the students’ performance in English as a Foreign Language (EFL). It focuses on the effect of autonomous learning that encourages students to learn English, a research conducted at Buraimi city, the Sultanate of Oman. The procedure of this investigation based on four dimensions: (1) sixty students are selected and divided into two groups, (2) pre and posttest projects are given to them, and (3) questionnaires are administered to both students who are involved in the experiment and 50 teachers (25 males and 25 females) to collect accurate data, (4) an interview with students and teachers to find out their attitude towards autonomous learning. Analysis of participants’ responses indicated that autonomous learning motivates students to learn English independently and increase the intrinsic rather than extrinsic motivation to improve their English language as a long-life active learning. The findings of this study show that autonomous learning approach is the best remedy to empower the students’ skills and overcome all relevant difficulties. They also show that secondary school teachers can fully rely on this learning approach that encourages language learners to monitor their progress, increase both learners and teachers’ motivation and ameliorate students’ behavior in the classroom. This approach is also an ongoing process, which takes time, patience and support to be lifelong learning.

Keywords: Omani, autonomous learning system, English as a Foreign Language (EFL), learning approach

Procedia PDF Downloads 466
2022 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 92
2021 Design and Implementation of Bluetooth Controlled Autonomous Vehicle

Authors: Amanuel Berhanu Kesamo

Abstract:

This paper presents both circuit simulation and hardware implementation of a robot vehicle that can be either controlled manually via Bluetooth with video streaming or navigate autonomously to a target point by avoiding obstacles. In manual mode, the user controls the mobile robot using C# windows form interfaced via Bluetooth. The camera mounted on the robot is used to capture and send the real time video to the user. In autonomous mode, the robot plans the shortest path to the target point while avoiding obstacles along the way. Ultrasonic sensor is used for sensing the obstacle in its environment. An efficient path planning algorithm is implemented to navigate the robot along optimal route.

Keywords: Arduino Uno, autonomous, Bluetooth module, path planning, remote controlled robot, ultra sonic sensor

Procedia PDF Downloads 142
2020 Design, Prototyping, Integration, Flight Testing of a 20 cm Span Fully Autonomous Fixed Wing Micro Air Vehicle

Authors: Vivek Paul, Abel Nelly, Shoeb A Adeel, R. Tilak, S. Maheshwaran, S. Pulikeshi, Roshan Antony, C. S. Suraj

Abstract:

This paper presents the complete design and development cycle of a 20 cm span fixed wing micro air vehicle that was developed at CSIR-NAL, under the micro air vehicle development program. The design is a cropped delta flying wing MAV with a modified N22 airfoil of 12.3% thickness. The design was fabricated using the fused deposition method- RPT technique. COTS components were procured and integrated into this RPT prototype. A commercial autopilot that was proven in the earlier MAV designs was used for this MAV. The MAV was flown fully autonomous for 14mins at an open field. The flight data showed good performance as expected from the MAV design. The paper also describes about the process involved in the design of MAVs.

Keywords: autopilot, autonomous mode, flight testing, MAV, RPT

Procedia PDF Downloads 519
2019 Dewatering Agents for Granular Bauxite

Authors: Bruno Diniz Fecchio

Abstract:

Operations have been demanding increasingly challenging operational targets for the dewatering process, requiring lower humidity for concentrates. Chemical dewatering agents are able to improve solid/liquid separation processes, allowing operations to deal with increased complexity caused by either mineralogical changes or seasonal events that present operations with challenging moisture requirements for transportation and downstream steps. These chemicals reduce water retention by reducing the capillary pressure of the mineral and contributing to improved water drainage. This current study addresses the reagent effects on pile dewatering for Bauxite. Such chemicals were able to decrease the moisture of granulated Bauxite (particle size of 5 – 50 mm). The results of the laboratory scale tests and industrial trials presented the obtention of up to 11% relative moisture reduction, which reinforced the strong interaction between dewatering agents and the particle surface of granulated Bauxite. The evaluated dewatering agents, however, did not present any negative impact on these operations.

Keywords: bauxite, dewatering agents, pile dewatering, moisture reduction

Procedia PDF Downloads 80
2018 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand

Procedia PDF Downloads 314
2017 Impact of Work Cycles on Autonomous Digital Learning

Authors: Bi̇rsen Tutunis, Zuhal Aydin

Abstract:

Guided digital learning has attracted many researchers as it leads to autonomous learning.The developments in Guided digital learning have led to changes in teaching and learning in English Language Teaching classes (Jeong-Bae, 2014). This study reports on tasks designed under the principles of learner autonomy in an online learning platform ‘’Webquest’’ with the purpose of teaching English to Turkish tertiary level students at a foundation university in Istanbul. Guided digital learning blog project contents were organized according to work-cycles phases (planning and negotiation phase, decision-making phase, project phase and evaluation phase) which are compatible with the principles of autonomous learning (Legenhausen,2003). The aim of the study was to implement the class blog project to find out its impact on students’ behaviours and beliefs towards autonomous learning. The mixed method research approach was taken. 24 tertiary level students participated in the study on voluntary basis. Data analysis was performed with Statistical Package for the Social Sciences. According to the results, students' attitudes towards digital learning did not differ before and after the training application. The learning styles of the students and their knowledge on digital learning scores differed. It has been observed that the students' learning styles and their digital learning scores increased after the training application. Autonomous beliefs, autonomous behaviors, group cohesion and group norms differed before and after the training application. Students' motivation level, strategies for learning English, perceptions of responsibility and out-of-class activity scores differed before and after the training application. It was seen that work-cycles in online classes create student centered learning that fosters autonomy. This paper will display the work cycles in detail and the researchers will give examples of in and beyond class activities and blog projects.

Keywords: guided digital learning, work cycles, english language teaching, autonomous learning

Procedia PDF Downloads 78
2016 Urban Design for Autonomous Vehicles

Authors: Narjis Zehra

Abstract:

After automobile revolution 1.0, we have automobile revolution 2.0 standing at the horizon, Autonomous Vehicles (AVs). While the technology is developing into more adaptable form, the conversations around its impact on our cities have already started on multiple scales, from academic institutions and community town halls, to the offices of mayors. In order to explore more the AVs impact on Urban transformation, we first inquire if cities can be redesigned or rebuilt. Secondly, we discuss expectation management for the public and policy in terms of what people think/believe AV technology will deliver, and what the current technological evidence suggests the technology and its adoption will look like. Thirdly, based on these discussions, we take Pittsburgh, PA, as a case study to extrapolate what other cities might need to do in order to prepare themselves for the upcoming technological revolution, that may impact more than just the research institutes. Finally, we conclude by suggesting a political way forward to embed urban design with AV technology for equitable cities of tomorrow.

Keywords: urban design, autonomous vehicles, transformation, policy

Procedia PDF Downloads 106
2015 The Impact of Autonomous Driving on Cities of the Future: A Literature Review

Authors: Maximilian A. Richter

Abstract:

The public authority needs to understand the role and impacts of autonomous vehicle (AV) on the mobility system. At present, however, research shows that the impact of AV on cities varies. As a consequence, it is difficult to make recommendations to policymakers on how they should prepare for the future when so much remains unknown about this technology. The study aims to provide an overview of the literature on how autonomous vehicles will affect the cities and traffic of the future. To this purpose, the most important studies are first selected, and their results summarized. Further on, it will be clarified which advantages AV have for cities and how it can lead to an improvement in the current problems/challenges of cities. To achieve the research aim and objectives, this paper approaches a literature review. For this purpose, in a first step, the most important studies are extracted. This is limited to studies that are peer-reviewed and have been published in high-ranked journals such as the Journal of Transportation: Part A. In step 2, the most important key performance indicator (KPIs) (such as traffic volume or energy consumption) are selected from the literature research. Due to the fact that different terms are used in the literature for similar statements/KPIs, these must first be clustered. Furthermore, for each cluster, the changes from the respective studies are compiled, as well as their survey methodology. In step 3, a sensitivity analysis per cluster is made. Here, it will be analyzed how the different studies come to their findings and on which assumptions, scenarios, and methods these calculations are based. From the results of the sensitivity analysis, the success factors for the implementation of autonomous vehicles are drawn, and statements are made under which conditions AVs can be successful.

Keywords: autonomous vehicles, city of the future, literature review, traffic simulations

Procedia PDF Downloads 106
2014 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot

Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski

Abstract:

The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.

Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation

Procedia PDF Downloads 90
2013 A Review of In-Vehicle Network for Cloud Connected Vehicle

Authors: Hanbhin Ryu, Ilkwon Yun

Abstract:

Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.

Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network

Procedia PDF Downloads 479
2012 Assessment of the Neuroprotective Effect of Oral Hypoglycemic Agents in Patients with Acute Ischemic Stroke

Authors: A. Alhusban, M. Alqawasmeh, F. Alfawares

Abstract:

Introduction: Diabetes is a chronic health problem and a major risk factor of stroke. A number of therapeutic modalities exist for diabetes management. It’s still unknown whether the different oral hypoglycemic agents would ameliorate the detrimental effect of diabetes on stroke severity. The objective of this work is to assess the effect of pretreatment with oral hypoglycemic agents, insulin and their combination on stroke severity at presentation. Patients and Methods: Patients admitted to the King Abdullah University Hospital (KAUH)-Jordan with ischemic stroke between January 2015 and December 2016 were evaluated and their comorbid diseases, treatment on admission and their neurologic severity was assessed using the National Institute of Health Stroke Scale (NIHSS) were documented. Stroke severity was compared for non-diabetic patients and diabetic patients treated with different antidiabetic agents. Results: Data from 324 patients with acute stroke was documented. The median age of participants was 69 years. Diabetes was documented in about 50% of the patients. Multinomial regression analysis identified diabetes treatment status as an independent predictor of neurological severity of stroke (p=0.032). Patients treated with oral hypoglycemic agents had a significantly lower NIHSS as compared to nondiabetic patients and insulin treated patients (p < 0.02). The positive effect of oral hypoglycemic agents was blunted by insulin co-treatment. Insulin did not alter the severity of stroke as compared to non-diabetics. Conclusion: Oral hypoglycemic agents may reduce the severity of neurologic deficit of ischemic stroke and may have neuroprotective effect.

Keywords: diabetes, stroke, neuroprotection, oral hypoglycemic agents

Procedia PDF Downloads 164
2011 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 128
2010 Sliding Mode Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzantabar, Mohammad Azadi, Alireza Alesaadi

Abstract:

This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.

Keywords: lyapunov stability, autonomous underwater vehicle, sliding mode controller, electronics engineering

Procedia PDF Downloads 611
2009 Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots

Authors: Angelos Kaminis, Dakotah Stirnweis

Abstract:

Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner.

Keywords: symbiotic, robotics, autonomous, plant-care, companion

Procedia PDF Downloads 144
2008 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
2007 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems

Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu

Abstract:

Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.

Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system

Procedia PDF Downloads 297
2006 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns

Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.

Keywords: UAV, drone, autonomous system, thermal imaging

Procedia PDF Downloads 75
2005 Biomedical Countermeasures to Category a Biological Agents

Authors: Laura Cochrane

Abstract:

The United States Centers for Disease Control and Prevention has established three categories of biological agents based on their ease of spread and the severity of the disease they cause. Category A biological agents are the highest priority because of their high degree of morbidity and mortality, ease of dissemination, the potential to cause social disruption and panic, special requirements for public health preparedness, and past use as a biological weapon. Despite the threat of Category A biological agents, opportunities for medical intervention exist. This work summarizes public information, consolidated and reviewed across the situational usefulness and disease awareness to offer discussion to three specific Category A agents: anthrax (Bacillus anthracis), botulism (Clostridium botulinum toxin), and smallpox (variola major), and provides an overview on the management of medical countermeasures available to treat these three (3) different types of pathogens. The medical countermeasures are discussed in the setting of pre-exposure prophylaxis, post-exposure prophylaxis, and therapeutic treatments to provide a framework for requirements in public health preparedness.

Keywords: anthrax, botulism, smallpox, medical countermeasures

Procedia PDF Downloads 76
2004 Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles

Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided

Keywords: UAV, autonomous systems, drones, geo thermal imaging

Procedia PDF Downloads 85
2003 Autonomous Landing of UAV on Moving Platform: A Mathematical Approach

Authors: Mortez Alijani, Anas Osman

Abstract:

Recently, the popularity of Unmanned aerial vehicles (UAVs) has skyrocketed amidst the unprecedented events and the global pandemic, as they play a key role in both the security and health sectors, through surveillance, taking test samples, transportation of crucial goods and spreading awareness among civilians. However, the process of designing and producing such aerial robots is suppressed by the internal and external constraints that pose serious challenges. Landing is one of the key operations during flight, especially, the autonomous landing of UAVs on a moving platform is a scientifically complex engineering problem. Typically having a successful automatic landing of UAV on a moving platform requires accurate localization of landing, fast trajectory planning, and robust control planning. To achieve these goals, the information about the autonomous landing process such as the intersection point, the position of platform/UAV and inclination angle are more necessary. In this study, the mathematical approach to this problem in the X-Y axis based on the inclination angle and position of UAV in the landing process have been presented. The experimental results depict the accurate position of the UAV, intersection between UAV and moving platform and inclination angle in the landing process, allowing prediction of the intersection point.

Keywords: autonomous landing, inclination angle, unmanned aerial vehicles, moving platform, X-Y axis, intersection point

Procedia PDF Downloads 164
2002 Antimicrobial Agents Produced by Yeasts

Authors: T. Büyüksırıt, H. Kuleaşan

Abstract:

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Keywords: antimicrobial agents, yeast, toxic protein, glycoprotein

Procedia PDF Downloads 362
2001 Antecedents and Consequences of Social Media Adoption in Travel and Tourism: Evidence from Customers and Industry

Authors: Mohamed A. Abou-Shouk, Mahamoud M. Hewedi

Abstract:

This study extends technology acceptance model (TAM) to investigate the antecedents and consequences of social media adoption by tourists and travel agents. It compares their perceptions on social media adoption and its consequences. Online survey was addressed to tourists and travel agents for data collection purposes. Structural equation modelling was employed for analysis purposes. The findings revealed that the majority of tourists and travel agents involved in the study believe in the usefulness of social media adoption for travel planning and marketing purposes. They agree that adopting social media could change the attitude of tourists towards specific destination or attraction and influence their purchasing decisions. This study contributes to knowledge by extending TAM and provides some managerial implication to marketers.

Keywords: TAM, social media, travel and tourism, travel agents

Procedia PDF Downloads 413
2000 Integrating Human Preferences into the Automated Decisions of Unmanned Aerial Vehicles

Authors: Arwa Khannoussi, Alexandru-Liviu Olteanu, Pritesh Narayan, Catherine Dezan, Jean-Philippe Diguet, Patrick Meyer, Jacques Petit-Frere

Abstract:

Due to the nature of autonomous Unmanned Aerial Vehicles (UAV) missions, it is important that the decisions of a UAV stay consistent with the priorities of an operator, while at the same time allowing them to be easily audited and explained. We propose a multi-layer decision engine that integrates the operator (human) preferences by using the Multi-Criteria Decision Aiding (MCDA) methods. A software implementation of a UAV simulator and of the decision engine is presented to highlight the advantage of using such techniques on high-level decisions. We demonstrate that, with such a preference-based decision engine, the decisions of the UAV are compatible with the priorities of the operator, which in turn increases her/his confidence in its autonomous behavior.

Keywords: autonomous UAV, multi-criteria decision aiding, multi-layers decision engine, operator's preferences, traceable decisions, UAV simulation

Procedia PDF Downloads 255
1999 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 27
1998 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation

Procedia PDF Downloads 332
1997 Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries

Authors: Michael T. Ajayi, Oluwakemi E. Fapojuwo

Abstract:

Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same farmers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials.

Keywords: capacity building, extension agents, dissemination, information/technologies

Procedia PDF Downloads 360
1996 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks

Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci

Abstract:

The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.

Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization

Procedia PDF Downloads 129
1995 Rule of Natural Synthetic Chemical on Lead Immobilization in Polluted Sandy Soils

Authors: Saud S. AL Oud

Abstract:

Soil contamination can have dire consequences, such as loss of ecosystem and agricultural productivity, diminished food chain quality, tainted water resources, economic loss, and human and animal illness. In recent years, attention has focused on the development of in situ immobilization methods that are generally less expensive and disruptive to the natural landscape, hydrology, and ecosystems than are conventional excavation treatments, and disposal methods. Soft, inexpensive, and efficient agents were used in the present research to immobilize Pb in polluted sandy soil. Five agents, either naturally occurring or chemically prepared, were used for this purpose. These agents include; iron ore (72% Fe2O3), cement, a mixture of calcite and shale rich in aluminum (CASH), and two chemically prepared amorphous materials of Al- and Fe-gel. These agents were selected due to their ability to specifically adsorb heavy metals onto their surface OH functional groups, which provide permanent immobilization of metal pollutants and reduce the fraction that is potentially mobile or bioavailable. The efficiency of these agents in immobilizing Pb were examined in a laboratory experiment, in which two rates (0.5 and 1.0 %) of tested agents were added to the polluted soils containing total contents of Pb ranging from 17.4-49.8 mg/kg. The results show that all immobilizing agents were succeed in minimizing the mobile form of Pb as extracted by 0.5 N HNO3. The extracted Pb decreased with increasing addition rate of immobilizing agents. At addition rate of 0.5%, HNO3 extractable-Pb varied widely depending on the agents type and were found to represent 21-67% of the initial values. All agents were able to reduce mobile Pb to levels lower than that (2.0 mg/kg) reported for non polluted soil, particularly for soils had initials of mobile Pb less than 10 mg/kg. Both iron oxide and CASH had the highest efficiency in immobilizing Pb, followed by cement, then amorphous materials of Fe and Al hydroxides.

Keywords: soil, synthetic chemical, lead, immobilization, polluted

Procedia PDF Downloads 240
1994 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers

Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang

Abstract:

The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.

Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications

Procedia PDF Downloads 61