Search results for: Russell’s approximation method
19248 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data
Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park
Abstract:
We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence
Procedia PDF Downloads 44519247 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation
Procedia PDF Downloads 38819246 First Principle Calculations of Magnetic and Electronic Properties of Double Perovskite Ba2MnMoO6
Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Souidi, A. Abbad, T. Lantri, Z. Aziz, A. Zitouni
Abstract:
The electronic and magnetic structures of double perovskite Ba2MnMoO6 are systematically investigated using the first principle method of the Full Potential Linear Augmented Plane Waves Plus the Local Orbitals (FP-LAPW+LO) within the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approximation (GGA). In order to take into account the strong on-site Coulomb interaction, we included the Hubbard correlation terms: LSDA+U and GGA+U approaches. Whereas half-metallic ferromagnetic character is observed due to dominant Mn spin-up and Mo spin-down contributions insulating ground state is obtained. The LSDA+U and GGA+U calculations yield better agreement with the theoretical and the experimental results than LSDA and GGA do.Keywords: electronic structure, double perovskite, first principles, Ba2MnMoO6, half-metallic
Procedia PDF Downloads 44119245 Application of the Concept of Comonotonicity in Option Pricing
Authors: A. Chateauneuf, M. Mostoufi, D. Vyncke
Abstract:
Monte Carlo (MC) simulation is a technique that provides approximate solutions to a broad range of mathematical problems. A drawback of the method is its high computational cost, especially in a high-dimensional setting, such as estimating the Tail Value-at-Risk for large portfolios or pricing basket options and Asian options. For these types of problems, one can construct an upper bound in the convex order by replacing the copula by the comonotonic copula. This comonotonic upper bound can be computed very quickly, but it gives only a rough approximation. In this paper we introduce the Comonotonic Monte Carlo (CoMC) simulation, by using the comonotonic approximation as a control variate. The CoMC is of broad applicability and numerical results show a remarkable speed improvement. We illustrate the method for estimating Tail Value-at-Risk and pricing basket options and Asian options when the logreturns follow a Black-Scholes model or a variance gamma model.Keywords: control variate Monte Carlo, comonotonicity, option pricing, scientific computing
Procedia PDF Downloads 51619244 A Tool Tuning Approximation Method: Exploration of the System Dynamics and Its Impact on Milling Stability When Amending Tool Stickout
Authors: Nikolai Bertelsen, Robert A. Alphinas, Klaus B. Orskov
Abstract:
The shortest possible tool stickout has been the traditional go-to approach with expectations of increased stability and productivity. However, experimental studies at Danish Advanced Manufacturing Research Center (DAMRC) have proven that for some tool stickout lengths, there exist local productivity optimums when utilizing the Stability Lobe Diagrams for chatter avoidance. This contradicts with traditional logic and the best practices taught to machinists. This paper explores the vibrational characteristics and behaviour of a milling system over the tool stickout length. The experimental investigation has been conducted by tap testing multiple endmills where the tool stickout length has been varied. For each length, the modal parameters have been recorded and mapped to visualize behavioural tendencies. Furthermore, the paper explores the correlation between the modal parameters and the Stability Lobe Diagram to outline the influence and importance of each parameter in a multi-mode system. The insights are conceptualized into a tool tuning approximation solution. It builds on an almost linear change in the natural frequencies when amending tool stickout, which results in changed positions of the Chatter-free Stability Lobes. Furthermore, if the natural frequency of two modes become too close, it will onset of the dynamic absorber effect phenomenon. This phenomenon increases the critical stable depth of cut, allowing for a more stable milling process. Validation tests on the tool tuning approximation solution have shown varying success of the solution. This outlines the need for further research on the boundary conditions of the solution to understand at which conditions the tool tuning approximation solution is applicable. If the conditions get defined, the conceptualized tool tuning approximation solution outlines an approach for quick and roughly approximating tool stickouts with the potential for increased stiffness and optimized productivity.Keywords: milling, modal parameters, stability lobes, tap testing, tool tuning
Procedia PDF Downloads 15719243 Numerical Solution of Integral Equations by Using Discrete GHM Multiwavelet
Authors: Archit Yajnik, Rustam Ali
Abstract:
In this paper, numerical method based on discrete GHM multiwavelets is presented for solving the Fredholm integral equations of second kind. There is hardly any article available in the literature in which the integral equations are numerically solved using discrete GHM multiwavelet. A number of examples are demonstrated to justify the applicability of the method. In GHM multiwavelets, the values of scaling and wavelet functions are calculated only at t = 0, 0.5 and 1. The numerical solution obtained by the present approach is compared with the traditional Quadrature method. It is observed that the present approach is more accurate and computationally efficient as compared to quadrature method.Keywords: GHM multiwavelet, fredholm integral equations, quadrature method, function approximation
Procedia PDF Downloads 46219242 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: integral differential equations, jump–diffusion model, American options, rational approximation
Procedia PDF Downloads 12319241 Bivariate Generalization of q-α-Bernstein Polynomials
Authors: Tarul Garg, P. N. Agrawal
Abstract:
We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness
Procedia PDF Downloads 37919240 Random Walks and Option Pricing for European and American Options
Authors: Guillaume Leduc
Abstract:
In this paper, we describe a broad setting under which the error of the approximation can be quantified, controlled, and for which convergence occurs at a speed of n⁻¹ for European and American options. We describe how knowledge of the error allows for arbitrarily fast acceleration of the convergence.Keywords: random walk approximation, European and American options, rate of convergence, option pricing
Procedia PDF Downloads 46419239 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 38819238 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli
Authors: A. Khernane, N. Khelil, L. Djerou
Abstract:
The aim of this work is to study the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control, and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.Keywords: boundary control, exact controllability, finite difference methods, functional optimization
Procedia PDF Downloads 34819237 Structural, Elastic, Vibrational and Thermal Properties of Perovskites AHfO3 (a=Ba,Sr,Eu)
Authors: H. Krarcha
Abstract:
The structural, elastic, vibrational and thermal properties of AHfO3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The optimized lattice parameters, independent elastic constants (C11, C12 and C44), bulk modulus (B), compressibility (b), shear modulus (G), Young’s modulus (Y ), Poisson’s ratio (n), Lame´’s coefficients (m, l), as well as band structure, density of states and electron density distributions are obtained and analyzed in comparison with the available theoretical and experimental data. For the first time the numerical estimates of elastic parameters of the polycrystalline AHfO3 ceramics (in framework of the VoigteReusseHill approximation) are performed. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the FP-LAPW method, is applied to study the thermal and vibrational effects. Predicted temperature and pressure effects on the structural parameters, thermal expansions, heat capacities, and Debye temperatures are determined from the non-equilibrium Gibbs functions.Keywords: Hafnium, elastic propreties, first principles calculation, perovskite
Procedia PDF Downloads 38419236 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 23219235 An Axisymmetric Finite Element Method for Compressible Swirling Flow
Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz
Abstract:
This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow
Procedia PDF Downloads 17619234 Influence of Glenohumeral Joint Approximation Technique on the Cardiovascular System in the Acute Phase after Stroke
Authors: Iva Hereitova, Miroslav Svatek, Vit Novacek
Abstract:
Background and Aim: Autonomic imbalance is one of the complications for immobilized patients in the acute stage after a stroke. The predominance of sympathetic activity significantly increases cardiac activity. The technique of glenohumeral joint approximation may contribute in a non-pharmacological way to the regulation of blood pressure and heart rate in patients in this risk group. The aim of the study was to evaluate the effect of glenohumeral joint approximation on the change in heart rate and blood pressure in immobilized patients in the acute phase after a stroke. Methods: The experimental study bilaterally evaluated heart rate, systolic and diastolic pressure values before and after glenohumeral joint approximation in 40 immobilized participants (72.6 ± 10.2 years) in the acute phase after stroke. The experimental group was compared with 40 healthy participants in the control group (68.6 ± 14.2 years). An SpO2 vital signs monitor and a validated Microlife WatchBP Office blood pressure monitor were used for evaluation. Statistical processing and evaluation were performed in MATLAB R2019 (The Math Works®, Inc., Natick, MA, USA). Results: Approximation of the glenohumeral joint resulted in a statistically significant decrease in systolic and diastolic pressure. An average decrease in systolic pressure for individual groups ranged from 8.2 to 11.3 mmHg (p <0.001). For diastolic pressure, the average decrease ranged from 5.0 - 14.2 mmHg (p <0.001). There was a statistically significant reduction in heart rate (p <0.01) only in patients after ischemic stroke in the inferior cerebral artery. There was the average decrease in heart rate of 3.9 beats per minute (median 4 beats per minute). Conclusion: Approximation of the glenohumeral joint leads to a statistically significant decrease in systolic and diastolic pressure in immobilized patients in the acute phase after stroke.Keywords: Aproximation technique, Cardiovaskular system, Glenohumeral joint, Stroke
Procedia PDF Downloads 21819233 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method
Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene
Abstract:
This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems
Procedia PDF Downloads 25519232 Application of Method of Symmetries at a Calculation and Planning of Circular Plate with Variable Thickness
Authors: Kirill Trapezon, Alexandr Trapezon
Abstract:
A problem is formulated for the natural oscillations of a circular plate of linearly variable thickness on the basis of the symmetry method. The equations of natural frequencies and forms for a plate are obtained, providing that it is rigidly fixed along the inner contour. The first three eigenfrequencies are calculated, and the eigenmodes of the oscillations of the acoustic element are constructed. An algorithm for applying the symmetry method and the factorization method for solving problems in the theory of oscillations for plates of variable thickness is shown. The effectiveness of the approach is demonstrated on the basis of comparison of known results and those obtained in the article. It is shown that the results are more accurate and reliable.Keywords: vibrations, plate, method of symmetries, differential equation, factorization, approximation
Procedia PDF Downloads 26419231 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 48319230 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation
Authors: Lawrence A. Farinola
Abstract:
Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error
Procedia PDF Downloads 12219229 Robust Numerical Solution for Flow Problems
Authors: Gregor Kosec
Abstract:
Simple and robust numerical approach for solving flow problems is presented, where involved physical fields are represented through the local approximation functions, i.e., the considered field is approximated over a local support domain. The approximation functions are then used to evaluate the partial differential operators. The type of approximation, the size of support domain, and the type and number of basis function can be general. The solution procedure is formulated completely through local computational operations. Besides local numerical method also the pressure velocity is performed locally with retaining the correct temporal transient. The complete locality of the introduced numerical scheme has several beneficial effects. One of the most attractive is the simplicity since it could be understood as a generalized Finite Differences Method, however, much more powerful. Presented methodology offers many possibilities for treating challenging cases, e.g. nodal adaptivity to address regions with sharp discontinuities or p-adaptivity to treat obscure anomalies in physical field. The stability versus computation complexity and accuracy can be regulated by changing number of support nodes, etc. All these features can be controlled on the fly during the simulation. The presented methodology is relatively simple to understand and implement, which makes it potentially powerful tool for engineering simulations. Besides simplicity and straightforward implementation, there are many opportunities to fully exploit modern computer architectures through different parallel computing strategies. The performance of the method is presented on the lid driven cavity problem, backward facing step problem, de Vahl Davis natural convection test, extended also to low Prandtl fluid and Darcy porous flow. Results are presented in terms of velocity profiles, convergence plots, and stability analyses. Results of all cases are also compared against published data.Keywords: fluid flow, meshless, low Pr problem, natural convection
Procedia PDF Downloads 23419228 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media
Authors: Olayiwola Moruf Oyedunsi
Abstract:
This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation
Procedia PDF Downloads 32319227 Block Implicit Adams Type Algorithms for Solution of First Order Differential Equation
Authors: Asabe Ahmad Tijani, Y. A. Yahaya
Abstract:
The paper considers the derivation of implicit Adams-Moulton type method, with k=4 and 5. We adopted the method of interpolation and collocation of power series approximation to generate the continuous formula which was evaluated at off-grid and some grid points within the step length to generate the proposed block schemes, the schemes were investigated and found to be consistent and zero stable. Finally, the methods were tested with numerical experiments to ascertain their level of accuracy.Keywords: Adam-Moulton Type (AMT), off-grid, block method, consistent and zero stable
Procedia PDF Downloads 48219226 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux
Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh
Abstract:
In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media
Procedia PDF Downloads 47619225 New Variational Approach for Contrast Enhancement of Color Image
Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang
Abstract:
In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure
Procedia PDF Downloads 45019224 First Principal Calculation of Structural, Elastic and Thermodynamic Properties of Yttrium-Copper Intermetallic Compound
Authors: Ammar Benamrani
Abstract:
This work investigates the equation of state parameters, elastic constants, and several other physical properties of (B2-type) Yttrium-Copper (YCu) rare earth intermetallic compound using the projected augmented wave (PAW) pseudopotentials method as implemented in the Quantum Espresso code. Using both the local density approximation (LDA) and the generalized gradient approximation (GGA), the finding of this research on the lattice parameter of YCu intermetallic compound agree very well with the experimental ones. The obtained results of the elastic constants and the Debye temperature are also in general in good agreement compared to the theoretical ones reported previously in literature. Furthermore, several thermodynamic properties of YCu intermetallic compound have been studied using quasi-harmonic approximations (QHA). The calculated data on the thermodynamic properties shows that the free energy and both isothermal and adiabatic bulk moduli decrease gradually with increasing of the temperature, while all other thermodynamic quantities increase with the temperature.Keywords: Yttrium-Copper intermetallic compound, thermo_pw package, elastic constants, thermodynamic properties
Procedia PDF Downloads 14919223 A Method for Multimedia User Interface Design for Mobile Learning
Authors: Shimaa Nagro, Russell Campion
Abstract:
Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.Keywords: human-computer interaction, interface design, mobile learning, education
Procedia PDF Downloads 24719222 Nonparametric Copula Approximations
Authors: Serge Provost, Yishan Zang
Abstract:
Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation
Procedia PDF Downloads 7519221 A New Reliability Allocation Method Based on Fuzzy Numbers
Authors: Peng Li, Chuanri Li, Tao Li
Abstract:
Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.Keywords: reliability allocation, fuzzy arithmetic, allocation weight, linear programming
Procedia PDF Downloads 34419220 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data
Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi
Abstract:
Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method
Procedia PDF Downloads 15519219 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 145