Search results for: Eddy Hermawan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 146

Search results for: Eddy Hermawan

86 BLDC Motor Design Considering Core Loss Caused by Welding

Authors: Hyun-Seok Hong, In-Gun Kim, Ye-Jun Oh, Ju Lee

Abstract:

This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared.

Keywords: welding, stator, Eddy current, BLDC

Procedia PDF Downloads 535
85 Behavior of Cold Formed Steel in Trusses

Authors: Reinhard Hermawan Lasut, Henki Wibowo Ashadi

Abstract:

The use of materials in Indonesia's construction sector requires engineers and practitioners to develop efficient construction technology, one of the materials used in cold-formed steel. Generally, the use of cold-formed steel is used in the construction of roof trusses found in houses or factories. The failure of the roof truss structure causes errors in the calculation analysis in the form of cross-sectional dimensions or frame configuration. The roof truss structure, vertical distance effect to the span length at the edge of the frame carries the compressive load. If the span is too long, local buckling will occur which causes problems in the frame strength. The model analysis uses various shapes of roof trusses, span lengths and angles with analysis of the structural stiffness matrix method. Model trusses with one-fifth shortened span and one-sixth shortened span also The trusses model is reviewed with increasing angles. It can be concluded that the trusses model by shortening the span in the compression area can reduce deflection and the model by increasing the angle does not get good results because the higher the roof, the heavier the load carried by the roof so that the force is not channeled properly. The shape of the truss must be calculated correctly so the truss is able to withstand the working load so that there is no structural failure.

Keywords: cold-formed, trusses, deflection, stiffness matrix method

Procedia PDF Downloads 140
84 Track and Trace Solution on Land Certificate Production: Indonesian Land Certificate

Authors: Adrian Rifqi, Febe Napitupulu, Erdi Hermawan, Edwin Putra, Yang Leprilian

Abstract:

This article focuses on the implementation of the production improvement process of the Indonesian land certificate product that printed in Perum Peruri as the state-owned enterprises. Based on the data obtained, there are several complaints from customers of the 2019 land certificate production. The complaints become a negative value to loyal customers of Perum Peruri. Almost all the complaints are referring to ‘defective printouts and the difference between products in packaging and packaging labels both in terms of type and quantity’. To overcome this problem, we intend to make an improvement to the production process that focuses on complaints ‘there is a difference between products in packaging with packaging labels’. Improvements in the land certificate production process are relying on the technology of the scales and QR code on the packaging label. In addition, using the QR code on the packaging label will facilitate the process of tracking product data. With this method, we hope to reduce the error rate between products in packaging with the packaging label both in terms of quantity, type, and product number on the land certificate and error rate of sending land certificates, which will be sent to many places to 0%. With this solution, we also hope to get precise data and real-time reports on the production of land certificates in the near future, so track and trace implementation can be done as the solution of the land certificate production.

Keywords: land certificates, QR code, track and trace, packaging

Procedia PDF Downloads 133
83 Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications

Authors: George Eduful, Kingsford J. A. Atanga

Abstract:

Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application.

Keywords: copper clad steel wire, conductivity, grounding, skin effect

Procedia PDF Downloads 257
82 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 276
81 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 132
80 Overhead Lines Induced Transient Overvoltage Analysis Using Finite Difference Time Domain Method

Authors: Abdi Ammar, Ouazir Youcef, Laissaoui Abdelmalek

Abstract:

In this work, an approach based on transmission lines theory is presented. It is exploited for the calculation of overvoltage created by direct impacts of lightning waves on a guard cable of an overhead high-voltage line. First, we show the theoretical developments leading to the propagation equation, its discretization by finite difference time domain method (FDTD), and the resulting linear algebraic equations, followed by the calculation of the linear parameters of the line. The second step consists of solving the transmission lines system of equations by the FDTD method. This enabled us to determine the spatio-temporal evolution of the induced overvoltage.

Keywords: lightning surge, transient overvoltage, eddy current, FDTD, electromagnetic compatibility, ground wire

Procedia PDF Downloads 58
79 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 253
78 Reduction of Planar Transformer AC Resistance Using a Planar Litz Wire Structure

Authors: Hamed Belloumi, Aymen Ammouri, Ferid Kourda

Abstract:

A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded litz wires. In order to further illustrate the eddy current effect in different arrangements, a finite-element analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.

Keywords: planar transformer, finite-element analysis (FEA), winding losses, planar litz wire

Procedia PDF Downloads 480
77 Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology

Authors: Qasim Zaheer, Jehanzeb Masud

Abstract:

The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results.

Keywords: Kelvin Helmholtz instability, embedded LES, complex flow field, ejector pump

Procedia PDF Downloads 271
76 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 98
75 Partially-Averaged Navier-Stokes for Computations of Flow Around Three-Dimensional Ahmed Bodies

Authors: Maryam Mirzaei, Sinisa Krajnovic´

Abstract:

The paper reports a study about the prediction of flows around simplified vehicles using Partially-Averaged Navier-Stokes (PANS). Numerical simulations are performed for two simplified vehicles: A slanted-back Ahmed body at Re=30 000 and a square back Ahmed body at Re=300 000. A comparison of the resolved and modeled physical flow scales is made with corresponding LES and experimental data for a better understanding of the performance of the PANS model. The PANS model is compared for coarse and fine grid resolutions and it is indicated that even a coarse-grid PANS simulation is able to produce fairly close flow predictions to those from a well-resolved LES simulation. The results indicate the possibility of improvement of the predictions by employing a finer grid resolution.

Keywords: partially-averaged Navier-Stokes, large eddy simulation, PANS, LES, Ahmed body

Procedia PDF Downloads 565
74 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure

Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda

Abstract:

A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.

Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire

Procedia PDF Downloads 373
73 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs

Authors: Anna Costanza Russo, Daniele Landi, Michele Germani

Abstract:

Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.

Keywords: ecodesign, energy efficiency, induction hobs, virtual prototyping

Procedia PDF Downloads 236
72 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 208
71 Management of the Asthma Crisis in the Unit of Intensive Care of the General Hospital of Reference of Kinshasa

Authors: Eddy K. Mukadi

Abstract:

The aim of this study was to provide contributing elements to improve the management of the asthma crisis in the intensive care unit of the General Reference Hospital of Kinshasa. This was a descriptive study of all patients in the intensive care unit presenting with the asthma attack during the period from February 5, 2013 to February 5, 2014. The main data were obtained from consultation registry and medical records. A total of 35 patients, 21 of whom were male (majority) compared to 14 female. Average age of patients was 46.48 plus or minus 16.98 with extremes ranging from 21-75 years. The clinic was dominated by dyspnea in 100% of cases, followed by rales with 91.4% of cases. In spite of the control of the crisis obtained after the treatment with B2 mimetic by inhalation was introduced A 91.5%; 88% corticosteroids; 80% oxygen, the therapeutic principle recommended for the management of asthma attacks was not respected in the majority of cases. This is why we suggest that improving the quality of care to be administered to patients will yield more adequate results.

Keywords: asthma crisis, intensive care, general hospital, Kinshasa

Procedia PDF Downloads 206
70 Numerical Simulation of Urea Water Solution Evaporation Behavior inside the Diesel Selective Catalytic Reduction System

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Selective catalytic reduction (SCR) converts the nitrogen oxides with the aid of a catalyst by adding aqueous urea into the exhaust stream. In this work, the urea water droplets are sprayed over the exhaust gases by treating with Lagrangian particle tracking. The evaporation of ammonia from a single droplet of urea water solution is investigated computationally by convection-diffusion controlled model. The conversion to ammonia due to thermolysis of urea water droplets is measured downstream at different sections using finite rate/eddy dissipation model. In this paper, the mixer installed at the upstream enhances the distribution of ammonia over the entire domain which is calculated for different time steps. Calculations are made within the respective duration such that the complete decomposition of urea is possible at a much shorter residence time.

Keywords: convection-diffusion controlled model, lagrangian particle tracking, selective catalytic reduction, thermolysis

Procedia PDF Downloads 381
69 Effects of the Non-Newtonian Viscosity of Blood on Flow Field in a Constricted Artery with a Porous Plaque

Authors: Maedeh Shojaeizadeh, Amirreza Yeganegi

Abstract:

Nowadays many people lose their lives due to cardiovascular diseases. Inappropriate food habits and lack of exercise expedite deposit process of fatty substances on inner surface of blood arteries. This abnormal lump disturbs uniform blood flow and reduces oxygen delivery to active organs. This work presents a numerical simulation of Non-Newtonian blood flow in a stenosis vessel. The vessel is considered as two dimensional channel and plaque area is modelled as a homogenous porous medium. To simulate blood flow reaction around stenosis region, we use C++ code and solve coupled Cauchy, Darcy, governing continuity and energy equations. The analyses results show that viscosity power (n) plays an important role in flow separation and the size of the eddy at the downstream edge of the plaque. It is also observed that with increasing (n) value, temperature discontinuity and likelihood of vessel rupture declined.

Keywords: blood flow, computational fluid dynamic, porosity, power law fluid

Procedia PDF Downloads 438
68 Strip Size Optimization for Spiral Type Actuator Coil Used in Electromagnetic Flat Sheet Forming Experiment

Authors: M. A. Aleem, M. S. Awan

Abstract:

Flat spiral coil for electromagnetic forming system has been modelled in FEMM 4.2 software. Copper strip was chosen as the material for designing the actuator coil. Relationship between height to width ratio (S-factor) of the copper strip and coil’s performance has been studied. Magnetic field intensities, eddy currents, and Lorentz force were calculated for the coils that were designed using six different 'S-factor' values (0.65, 0.75, 1.05, 1.25, 1.54 and 1.75), keeping the cross-sectional area of strip the same. Results obtained through simulation suggest that actuator coil with S-factor ~ 1 shows optimum forming performance as it exerts maximum Lorentz force (84 kN) on work piece. The same coils were fabricated and used for electromagnetic sheet forming experiments. Aluminum 6061 sheets of thickness 1.5 mm have been formed using different voltage levels of capacitor bank. Smooth forming profiles were obtained with dome heights 28, 35 and 40 mm in work piece at 800, 1150 and 1250 V respectively.

Keywords: FEM modelling, electromagnetic forming, spiral coil, Lorentz force

Procedia PDF Downloads 264
67 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 104
66 LES Investigation of the Natural Vortex Length in a Small-Scale Gas Cyclone

Authors: Dzmitry Misiulia, Sergiy Antonyuk

Abstract:

Small-scale cyclone separators are widely used in aerosol sampling. The flow field in a cyclone sampler is very complex, especially the vortex behavior. Most of the existing models for calculating cyclone efficiency use the same stable vortex structure while the vortex demonstrates dynamic variations rather than the steady-state picture. It can spontaneously ‘end’ at some point within the body of the separator. Natural vortex length is one of the most critical issues when designing and operating gas cyclones and is crucial to proper cyclone performance. The particle transport along the wall to the grid pot is not effective beyond this point. The flow field and vortex behavior inside the aerosol sampler have been investigated for a wide range of Reynolds numbers using Large Eddy Simulations. Two characteristics types of vortex behavior have been found with simulations. At low flow rates the vortex created in the cyclone dissipates in free space (without attaching to a surface) while at higher flow rates it attaches to the cyclone wall. The effects of the Reynolds number on the natural vortex length and the rotation frequency of the end of the vortex have been revealed.

Keywords: cyclone, flow field, natural vortex length, pressure drop

Procedia PDF Downloads 130
65 Standardization of Solar Water Pumping System for Remote Areas in Indonesia

Authors: Danar Agus Susanto, Hermawan Febriansyah, Meilinda Ayundyahrini

Abstract:

The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia.

Keywords: efficiency, inappropriate installation, remote areas, solar water pumping system, standard

Procedia PDF Downloads 177
64 Effect of Al Contents on Magnetic Domains of {100} Grains in Electrical Steels

Authors: Hyunseo Choi, Jaewan Hong, Seil Lee, Yang Mo Koo

Abstract:

Non-oriented (NO) electrical steel is one of the most important soft magnetic materials for rotating machines. Si has usually been added to electrical steels to reduce eddy current loss by increasing the electrical resistivity. Si content more than 3.5 wt% causes cracks during cold rolling due to increase of brittleness. Al also increases the electrical resistivity of the materials as much as Si. In addition, cold workability of Fe-Al is better than Fe-Si, so that Al can be added up to 6.0 wt%. However, the effect of Al contents on magnetic properties of electrical steels has not been studied in detail. Magnetic domains of {100} grains in electrical steels, ranging from 1.85 to 6.54 wt% Al, were observed by magneto-optic Kerr microscopy. Furthermore, the correlation of magnetic domains with magnetic properties was investigated. As Al contents increased, the magnetic domain size of {100} grains decreased due to lowered domain wall energy. Reorganization of magnetic domain structure became more complex as domain size decreased. Therefore, the addition of Al to electrical steel caused hysteresis loss to increase. Anomalous loss decreased and saturated after 4.68% Al.

Keywords: electrical steel, magnetic domain structure, Al addition, core loss, rearrangement of domains

Procedia PDF Downloads 213
63 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents

Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino

Abstract:

In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.

Keywords: column-filter, mercury, mining, polysulfide, water treatment

Procedia PDF Downloads 121
62 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 310
61 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence

Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy

Abstract:

Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.

Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows

Procedia PDF Downloads 120
60 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity

Authors: A. Khaleel, S. Gao

Abstract:

Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k- models such as standard, RNG and Realizable k- model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown a good ability of this method in predicting more detailed flow structures in the cavity.

Keywords: mixed convection, lid-driven cavity, turbulent flow, RANS model, large Eddy simulation

Procedia PDF Downloads 187
59 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 381
58 An Empirical Diagnosis of the Maladies and Therapies of Budgeting in Nigeria

Authors: Ben-Caleb Egbide, Omolehinwa O. Eddy, Adeyemi S. Keyinde, Eriabie Sylvester, Ojeka Stephen

Abstract:

The national budget remains an integral part of the developmental plan of the economy of any country. The budget reflects the fundamental values underlying the government’s economic policies and objectives and whose execution is expected to realize national/public desires. In Nigeria, over three decades budget had failed to deliver the desired benefits, suggesting the existence of infractions, which are yet to be empirically ascertained. This paper attempts a diagnosis of the infractions peculiar to Nigeria budgetary system and their suggested panacea. Data were collected through the administration of questionnaire to a cross section of organizations/institutions representing government agencies and the general public. Mann-Whitney U test was employed to gauge the consistency in perception of the two groups. The result revealed that budget indiscipline, official corruption, allocative inefficiency and poor budget governance are the most influential infractions of budgeting in Nigeria. Consequently, it was suggested that budget transparency, target budgeting, zero tolerance on corruption and budget discipline are the most cogent therapies to the malfunctioning in Nigerian budgetary system.

Keywords: budgeting, budget maladies, budget therapies, Nigeria

Procedia PDF Downloads 263
57 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 62