Search results for: central nervous system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19560

Search results for: central nervous system

10620 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction

Authors: B. Godefroy, D. Beladjine, K. Beddiar

Abstract:

In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.

Keywords: information system, interoperability, models for exploitation, property industry

Procedia PDF Downloads 141
10619 Analysis of Ancient and Present Lightning Protection Systems of Large Heritage Stupas in Sri Lanka

Authors: J.R.S.S. Kumara, M.A.R.M. Fernando, S.Venkatesh, D.K. Jayaratne

Abstract:

Protection of heritage monuments against lightning has become extremely important as far as their historical values are concerned. When such structures are large and tall, the risk of lightning initiated from both cloud and ground can be high. This paper presents a lightning risk analysis of three giant stupas in Anuradhapura era (fourth century BC onwards) in Sri Lanka. The three stupas are Jethawaaramaya (269-296 AD), Abayagiriya (88-76 BC) and Ruwanweliseya (161-137 BC), the third, fifth and seventh largest ancient structures in the world. These stupas are solid brick structures consisting of a base, a near hemispherical dome and a conical spire on the top. The ancient stupas constructed with a dielectric crystal on the top and connected to the ground through a conducting material, was considered as the hypothesis for their original lightning protection technique. However, at present, all three stupas are protected with Franklin rod type air termination systems located on top of the spire. First, a risk analysis was carried out according to IEC 62305 by considering the isokeraunic level of the area and the height of the stupas. Then the standard protective angle method and rolling sphere method were used to locate the possible touching points on the surface of the stupas. The study was extended to estimate the critical current which could strike on the unprotected areas of the stupas. The equations proposed by (Uman 2001) and (Cooray2007) were used to find the striking distances. A modified version of rolling sphere method was also applied to see the effects of upward leaders. All these studies were carried out for two scenarios: with original (i.e. ancient) lightning protection system and with present (i.e. new) air termination system. The field distribution on the surface of the stupa in the presence of a downward leader was obtained using finite element based commercial software COMSOL Multiphysics for further investigations of lightning risks. The obtained results were analyzed and compared each other to evaluate the performance of ancient and new lightning protection methods and identify suitable methods to design lightning protection systems for stupas. According to IEC standards, all three stupas with new and ancient lightning protection system has Level IV protection as per protection angle method. However according to rolling sphere method applied with Uman’s equation protection level is III. The same method applied with Cooray’s equation always shows a high risk with respect to Uman’s equation. It was found that there is a risk of lightning strikes on the dome and square chamber of the stupa, and the corresponding critical current values were different with respect to the equations used in the rolling sphere method and modified rolling sphere method.

Keywords: Stupa, heritage, lightning protection, rolling sphere method, protection level

Procedia PDF Downloads 242
10618 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 19
10617 Delhi Metro: A Race towards Zero Emission

Authors: Pramit Garg, Vikas Kumar

Abstract:

In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.

Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport

Procedia PDF Downloads 121
10616 Evaluation of Firearm Injury Syndromic Surveillance in Utah

Authors: E. Bennion, A. Acharya, S. Barnes, D. Ferrell, S. Luckett-Cole, G. Mower, J. Nelson, Y. Nguyen

Abstract:

Objective: This study aimed to evaluate the validity of a firearm injury query in the Early Notification of Community-based Epidemics syndromic surveillance system. Syndromic surveillance data are used at the Utah Department of Health for early detection of and rapid response to unusually high rates of violence and injury, among other health outcomes. The query of interest was defined by the Centers for Disease Control and Prevention and used chief complaint and discharge diagnosis codes to capture initial emergency department encounters for firearm injury of all intents. Design: Two epidemiologists manually reviewed electronic health records of emergency department visits captured by the query from April-May 2020, compared results, and sent conflicting determinations to two arbiters. Results: Of the 85 unique records captured, 67 were deemed probable, 19 were ruled out, and two were undetermined, resulting in a positive predictive value of 75.3%. Common reasons for false positives included non-initial encounters and misleading keywords. Conclusion: Improving the validity of syndromic surveillance data would better inform outbreak response decisions made by state and local health departments. The firearm injury definition could be refined to exclude non-initial encounters by negating words such as “last month,” “last week,” and “aftercare”; and to exclude non-firearm injury by negating words such as “pellet gun,” “air gun,” “nail gun,” “bullet bike,” and “exit wound” when a firearm is not mentioned.

Keywords: evaluation, health information system, firearm injury, syndromic surveillance

Procedia PDF Downloads 164
10615 Effects of GRF on CMJ in Different Wooden Surface Systems

Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen

Abstract:

Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.

Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad

Procedia PDF Downloads 438
10614 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 371
10613 House Extension Strategy in High-Density Informal Settlement: A Case Study in Kampung Cikini, Jakarta, Indonesia

Authors: Meidesta Pitria, Akiko Okabe

Abstract:

In high-density informal settlement, extension area at the outside of the houses could primarily happen as a spatial modification response. House extension in high-density informal settlement is not only becoming a physical spatial modification that makes a blur zone between private and public but also supporting the growth and existence of informal economy and other daily activities in both individuals and communities. This research took a case study in an informal settlement named Kampung Cikini, a densely populated area in Central Jakarta. The aim of this study is to identify and clarify house extension as a strategy in dealing with urbanization in an informal settlement. By using the perspective and information from housewives, the analysis is based on the assumption that land ownership transformation and the activities in house extension area influence the different kinds of house extension’s spatial modification and local planning policy in relation with the implementation of house extension strategy. The data collection was done in four sites, two sites are located in outer-wide alley and another two sites are located in inner-narrow alley. In this research, data of 104 housewives in 86 houses were collected through representatives of housewives and local leader of each sites. The research was started from participatory mapping process, deep interview with local leader, and initiated collaboration with housewives community in having a celebration as communal event to cultivate together the issue. This study shows that land ownership, activities, and alley are indispensable in the decision of extension space making. The more permanency status of land ownership the more permanent and various extension could be implemented. However, in some blocks, the existence of origin house or first land owner also has a significant role in coordination and agreement in using and modifying extension space. In outer-wide alley, the existence of more various activities in front area of the houses is significantly related with the chance given by having wider alley, particularly for informal income generating activities. In the inner-narrow alley, limited space in front of the houses affects more negotiations in the community for having more shared spaces, even inside their private space.

Keywords: house extension, housewives, informal settlement, kampung, high density

Procedia PDF Downloads 202
10612 Gender Perspective in Peace Operations: An Analysis of 14 UN Peace Operations

Authors: Maressa Aires de Proenca

Abstract:

The inclusion of a gender perspective in peace operations is based on a series of conventions, treaties, and resolutions designed to protect and include women addressing gender mainstreaming. The UN Security Council recognizes that women's participation and gender equality within peace operations are indispensable for achieving sustainable development and peace. However, the participation of women in the field of peace and security is still embryonic. There are gaps when we think about female participation in conflict resolution and peace promotion spaces, and it does not seem clear how women are present in these spaces. This absence may correspond to silence about representation and the guarantee of the female perspective within the context of peace promotion. Thus, the present research aimed to describe the panorama of the participation of women who are currently active in the 14 active UN peace operations, which are: 1) MINUJUSTH, Haiti, 2) MINURSO, Western Sahara, 3) MINUSCA, Central African Republic, 4) MINUSMA, Mali, 5) MONUSCO, the Democratic Republic of the Congo, 6) UNAMID, Darfur, 7) UNDOF, Golan, 8) UNFICYP, Cyprus, 9) UNIFIL, Lebanon, 10) UNISFA, Abyei, 11) UNMIK, Kosovo, 12) UNMISS, South Sudan, 13) UNMOGIP, India, and Pakistan, and 14) UNTSO, Middle East. A database was constructed that reported: (1) position held by the woman in the peace operation, (2) her profession, (3) educational level, (4) marital status, (5) religion, (6) nationality, (8) number of years working with peace operations, (9) whether the operation in which it operates has provided training on gender issues. For the construction of this database, official reports and statistics accessed through the UN Peacekeeping Resource Hub were used; The United Nations Statistical Commission, Peacekeeping Master Open Datasets, The Armed Conflict Database (ACD), The International Institute for Strategic Studies (IISS) database; Armed Conflict Location & Event Data Project (ACLED) database; from the Evidence and Data for Gender Equality (EDGE) database. In addition to access to databases, peacekeeping operations will be contacted directly, and data requested individually. The database showed that the presence of women in these peace operations is still incipient, but growing. There are few women in command positions, and most of them occupy administrative or human-care positions.

Keywords: women, peace and security, peacekeeping operations, peace studies

Procedia PDF Downloads 133
10611 Modeling Aerosol Formation in an Electrically Heated Tobacco Product

Authors: Markus Nordlund, Arkadiusz K. Kuczaj

Abstract:

Philip Morris International (PMI) is developing a range of novel tobacco products with the potential to reduce individual risk and population harm in comparison to smoking cigarettes. One of these products is the Tobacco Heating System 2.2 (THS 2.2), (named as the Electrically Heated Tobacco System (EHTS) in this paper), already commercialized in a number of countries (e.g., Japan, Italy, Switzerland, Russia, Portugal and Romania). During use, the patented EHTS heats a specifically designed tobacco product (Electrically Heated Tobacco Product (EHTP)) when inserted into a Holder (heating device). The EHTP contains tobacco material in the form of a porous plug that undergoes a controlled heating process to release chemical compounds into vapors, from which an aerosol is formed during cooling. The aim of this work was to investigate the aerosol formation characteristics for realistic operating conditions of the EHTS as well as for relevant gas mixture compositions measured in the EHTP aerosol consisting mostly of water, glycerol and nicotine, but also other compounds at much lower concentrations. The nucleation process taking place in the EHTP during use when operated in the Holder has therefore been modeled numerically using an extended Classical Nucleation Theory (CNT) for multicomponent gas mixtures. Results from the performed simulations demonstrate that aerosol droplets are formed only in the presence of an aerosol former being mainly glycerol. Minor compounds in the gas mixture were not able to reach a supersaturated state alone and therefore could not generate aerosol droplets from the multicomponent gas mixture at the operating conditions simulated. For the analytically characterized aerosol composition and estimated operating conditions of the EHTS and EHTP, glycerol was shown to be the main aerosol former triggering the nucleation process in the EHTP. This implies that according to the CNT, an aerosol former, such as glycerol needs to be present in the gas mixture for an aerosol to form under the tested operating conditions. To assess if these conclusions are sensitive to the initial amount of the minor compounds and to include and represent the total mass of the aerosol collected during the analytical aerosol characterization, simulations were carried out with initial masses of the minor compounds increased by as much as a factor of 500. Despite this extreme condition, no aerosol droplets were generated when glycerol, nicotine and water were treated as inert species and therefore not actively contributing to the nucleation process. This implies that according to the CNT, an aerosol cannot be generated without the help of an aerosol former, from the multicomponent gas mixtures at the compositions and operating conditions estimated for the EHTP, even if all minor compounds are released or generated in a single puff.

Keywords: aerosol, classical nucleation theory (CNT), electrically heated tobacco product (EHTP), electrically heated tobacco system (EHTS), modeling, multicomponent, nucleation

Procedia PDF Downloads 269
10610 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 83
10609 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 140
10608 Integrating Geographic Information into Diabetes Disease Management

Authors: Tsu-Yun Chiu, Tsung-Hsueh Lu, Tain-Junn Cheng

Abstract:

Background: Traditional chronic disease management did not pay attention to effects of geographic factors on the compliance of treatment regime, which resulted in geographic inequality in outcomes of chronic disease management. This study aims to examine the geographic distribution and clustering of quality indicators of diabetes care. Method: We first extracted address, demographic information and quality of care indicators (number of visits, complications, prescription and laboratory records) of patients with diabetes for 2014 from medical information system in a medical center in Tainan City, Taiwan, and the patients’ addresses were transformed into district- and village-level data. We then compared the differences of geographic distribution and clustering of quality of care indicators between districts and villages. Despite the descriptive results, rate ratios and 95% confidence intervals (CI) were estimated for indices of care in order to compare the quality of diabetes care among different areas. Results: A total of 23,588 patients with diabetes were extracted from the hospital data system; whereas 12,716 patients’ information and medical records were included to the following analysis. More than half of the subjects in this study were male and between 60-79 years old. Furthermore, the quality of diabetes care did indeed vary by geographical levels. Thru the smaller level, we could point out clustered areas more specifically. Fuguo Village (of Yongkang District) and Zhiyi Village (of Sinhua District) were found to be “hotspots” for nephropathy and cerebrovascular disease; while Wangliau Village and Erwang Village (of Yongkang District) would be “coldspots” for lowest proportion of ≥80% compliance to blood lipids examination. On the other hand, Yuping Village (in Anping District) was the area with the lowest proportion of ≥80% compliance to all laboratory examination. Conclusion: In spite of examining the geographic distribution, calculating rate ratios and their 95% CI could also be a useful and consistent method to test the association. This information is useful for health planners, diabetes case managers and other affiliate practitioners to organize care resources to the areas most needed.

Keywords: catchment area of healthcare, chronic disease management, Geographic information system, quality of diabetes care

Procedia PDF Downloads 279
10607 Motion Capture Based Wizard of Oz Technique for Humanoid Robot

Authors: Rafal Stegierski, Krzysztof Dmitruk

Abstract:

The paper focuses on robotic tele-presence system build around humanoid robot operated with controller-less Wizard of Oz technique. Proposed solution gives possibility to quick start acting as a operator with short, if any, initial training.

Keywords: robotics, motion capture, Wizard of Oz, humanoid robots, human robot interaction

Procedia PDF Downloads 476
10606 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 66
10605 Modelling Optimal Control of Diabetes in the Workplace

Authors: Eunice Christabel Chukwu

Abstract:

Introduction: Diabetes is a chronic medical condition which is characterized by high levels of glucose in the blood and urine; it is usually diagnosed by means of a glucose tolerance test (GTT). Diabetes can cause a range of health problems if left unmanaged, as it can lead to serious complications. It is essential to manage the condition effectively, particularly in the workplace where the impact on work productivity can be significant. This paper discusses the modelling of optimal control of diabetes in the workplace using a control theory approach. Background: Diabetes mellitus is a condition caused by too much glucose in the blood. Insulin, a hormone produced by the pancreas, controls the blood sugar level by regulating the production and storage of glucose. In diabetes, there may be a decrease in the body’s ability to respond to insulin or a decrease in insulin produced by the pancreas which will lead to abnormalities in the metabolism of carbohydrates, proteins, and fats. In addition to the health implications, the condition can also have a significant impact on work productivity, as employees with uncontrolled diabetes are at risk of absenteeism, reduced performance, and increased healthcare costs. While several interventions are available to manage diabetes, the most effective approach is to control blood glucose levels through a combination of lifestyle modifications and medication. Methodology: The control theory approach involves modelling the dynamics of the system and designing a controller that can regulate the system to achieve optimal performance. In the case of diabetes, the system dynamics can be modelled using a mathematical model that describes the relationship between insulin, glucose, and other variables. The controller can then be designed to regulate the glucose levels to maintain them within a healthy range. Results: The modelling of optimal control of diabetes in the workplace using a control theory approach has shown promising results. The model has been able to predict the optimal dose of insulin required to maintain glucose levels within a healthy range, taking into account the individual’s lifestyle, medication regimen, and other relevant factors. The approach has also been used to design interventions that can improve diabetes management in the workplace, such as regular glucose monitoring and education programs. Conclusion: The modelling of optimal control of diabetes in the workplace using a control theory approach has significant potential to improve diabetes management and work productivity. By using a mathematical model and a controller to regulate glucose levels, the approach can help individuals with diabetes to achieve optimal health outcomes while minimizing the impact of the condition on their work performance. Further research is needed to validate the model and develop interventions that can be implemented in the workplace.

Keywords: mathematical model, blood, insulin, pancreas, model, glucose

Procedia PDF Downloads 57
10604 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 381
10603 Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation

Authors: Saeed Chamehsara, Seyed Mostafa Mirsalim, Mehdi Tajdari

Abstract:

In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively.

Keywords: CFD simulation, HD diesel engine, upgrading power, injection pressure, fuel injection discharge curve, combustion process

Procedia PDF Downloads 520
10602 Immersed in Design: Using an Immersive Teaching Space to Visualize Design Solutions

Authors: Lisa Chandler, Alistair Ward

Abstract:

A significant component of design pedagogy is the need to foster design thinking in various contexts and to support students in understanding links between educational exercises and their potential application in professional design practice. It is also important that educators provide opportunities for students to engage with new technologies and encourage them to imagine applying their design skills for a range of outcomes. Problem solving is central to design so it is also essential that students understand that there can be multiple solutions to a design brief, and are supported in undertaking creative experimentation to generate imaginative outcomes. This paper presents a case study examining some innovative approaches to addressing these elements of design pedagogy. It investigates the effectiveness of the Immerse Lab, a three wall projection room at the University of the Sunshine Coast, Australia, as a learning context for design practice, for generating ideas and for supporting learning involving the comparative display of design outcomes. The project required first year design students to create a simple graphic design derived from an ordinary object and to incorporate specific design criteria. Utilizing custom-designed software, the students’ solutions were projected together onto the Immerse walls to create a large-scale, immersive grid of images, which was used to compare and contrast various responses to the same problem. The software also enabled individual student designs to be transformed, multiplied and enlarged in multiple ways and prompted discussions around the applicability of the designs in real world contexts. Teams of students interacted with their projected designs, brainstorming imaginative applications for their outcomes. Analysis of 77 anonymous student surveys revealed that the majority of students found: learning in the Immerse Lab to be beneficial; comparative review more effective than in standard tutorial rooms; that the activity generated new ideas; it encouraged students to think differently about their designs; it inspired students to develop their existing designs or create new ones. The project demonstrates that curricula involving immersive spaces can be effective in supporting engaging and relevant design pedagogy and might be utilized in other disciplinary areas.

Keywords: design pedagogy, immersive education, technology-enhanced learning, visualization

Procedia PDF Downloads 254
10601 Patriarchy in Caste Society and Control over Women’s Sexuality in India

Authors: Renu Singh

Abstract:

The caste system in Indian society plays an important role in subjugation of women. It creates divides and controls over women’s sexuality in various ways. This paper attempts to look into various modes in which the institution of caste makes some forms of sexuality as socially “acceptable” norms, while deems others as obscene, immoral and against social ethos. Based on a review of existing literature in this area this paper attempts to understand the notion of sexuality in Indian context. It tries to understand how the emergence of norms and values of sexual behaviour has been entwined with the evolution of caste system and the subjugation of many sections of Indian society. It also attempts to trace the internalisation of patriarchal values in Indian society, and the role played by the colonial rulers in creating and maintaining stringent division of space into public and private ones. It is argued here that brahmanical patriarchy, which is a unique phenomenon of the Indian Subcontinent, plays a crucial role in subjugating and controlling women in general and their sexuality in particular. It also creates a divide among women of different castes. Furthermore, the process of colonisation played an important role in shaping the discourse of sexuality in its present form. There were contradictions as well as consensus between the colonial rulers over the questions of regulation of the private domain, as in introducing reform legislation in the nineteenth century informed the debate on sexuality in postcolonial India. The process of emergence of the dichotomous notions of ‘good’ and ‘bad’ sexuality, and the resistance to any ‘deviation’ from the ‘normal’ sexuality is located, not merely in the ‘passive’ evolution of society, but in the actual politics of it.

Keywords: caste, control, sexuality, regulation, brahmanical patriarchy, India

Procedia PDF Downloads 327
10600 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 264
10599 The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 83
10598 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects

Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang

Abstract:

As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.

Keywords: 4D, 5D, 6D, active BIM

Procedia PDF Downloads 273
10597 The application of Gel Dosimeters and Comparison with other Dosimeters in Radiotherapy: A Literature Review

Authors: Sujan Mahamud

Abstract:

Purpose: A major challenge in radiotherapy treatment is to deliver precise dose of radiation to the tumor with minimum dose to the healthy normal tissues. Recently, gel dosimetry has emerged as a powerful tool to measure three-dimensional (3D) dose distribution for complex delivery verification and quality assurance. These dosimeters act both as a phantom and detector, thus confirming the versatility of dosimetry technique. The aim of the study is to know the application of Gel Dosimeters in Radiotherapy and find out the comparison with 1D and 2D dimensional dosimeters. Methods and Materials: The study is carried out from Gel Dosimeter literatures. Secondary data and images have been collected from different sources such as different guidelines, books, and internet, etc. Result: Analyzing, verifying, and comparing data from treatment planning system (TPS) is determined that gel dosimeter is a very excellent powerful tool to measure three-dimensional (3D) dose distribution. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous gel. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimized MRI acquisition protocol and a new MRI scanner. The method developed for comparing measuring gel data with calculated treatment plans, the gel dosimetry method, was proven to be a useful for radiation treatment planning verification. In 1D and 2D Film, the depth dose and lateral for RMSD are 1.8% and 2%, and max (Di-Dj) are 2.5% and 8%. Other side 2D+ ( 3D) Film Gel and Plan Gel for RMSDstruct and RMSDstoch are 2.3% & 3.6% and 1% & 1% and system deviation are -0.6% and 2.5%. The study is investigated that the result fined 2D+ (3D) Film Dosimeter is better than the 1D and 2D Dosimeter. Discussion: Gel Dosimeters is quality control and quality assurance tool which will used the future clinical application.

Keywords: gel dosimeters, phantom, rmsd, QC, detector

Procedia PDF Downloads 149
10596 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin

Procedia PDF Downloads 131
10595 Diagnostic Value of CT Scan in Acute Appendicitis

Authors: Maria Medeiros, Suren Surenthiran, Abitha Muralithar, Soushma Seeburuth, Mohammed Mohammed

Abstract:

Introduction: Appendicitis is the most common surgical emergency globally and can have devastating consequences. Diagnostic imaging in acute appendicitis has become increasingly common in aiding the diagnosis of acute appendicitis. Computerized tomography (CT) and ultrasound (US) are the most commonly used imaging modalities for diagnosing acute appendicitis. Pre-operative imaging has contributed to a reduction of negative appendicectomy rates from between 10-29% to 5%. Literature report CT scan has a diagnostic sensitivity of 94% in acute appendicitis. This clinical audit was conducted to establish if the CT scan's diagnostic yield for acute appendicitis matches the literature. CT scan has a high sensitivity and specificity for diagnosing acute appendicitis and its use can result in a lower negative appendicectomy rate. The aim of this study is to compare the pre-operative imaging findings from CT scans to the histopathology results post-operatively and establish the accuracy of CT scans in aiding the diagnosis of acute appendicitis. Methods: This was a retrospective study focusing on adult presentations to the general surgery department in a district general hospital in central London with an impression of acute appendicitis. We analyzed all patients from July 2022 to December 2022 who underwent a CT scan preceding appendicectomy. Pre-operative CT findings and post-operative histopathology findings were compared to establish the efficacy of CT scans in diagnosing acute appendicitis. Our results were also cross-referenced with pre-existing literature. Data was collected and anonymized using CERNER and analyzed in Microsoft Excel. Exclusion criteria: Children, age <16. Results: 65 patients had CT scans in which the report stated acute appendicitis. Of those 65 patients, 62 patients underwent diagnostic laparoscopies. 100% of patients who underwent an appendicectomy with a pre-operative CT scan showing acute appendicitis had acute appendicitis in histopathology analysis. 3 of the 65 patients who had a CT scan showing appendicitis received conservative treatment. Conclusion: CT scans positive for acute appendicitis had 100% sensitivity and a positive predictive value, which matches published research studies (sensitivity of 94%). The use of CT scans in the diagnostic work-up for acute appendicitis can be extremely helpful in a) confirming the diagnosis and b) reducing the rates of negative appendicectomies and consequently reducing unnecessary operative-associated risks for patients, reducing costs and reducing pressure on emergency theatre lists.

Keywords: acute apendicitis, CT scan, general surgery, imaging

Procedia PDF Downloads 85
10594 Eco-Environmental Vulnerability Evaluation in Mountain Regions Using Remote Sensing and Geographical Information System: A Case Study of Pasol Gad Watershed of Garhwal Himalaya, India

Authors: Suresh Kumar Bandooni, Mirana Laishram

Abstract:

The Mid Himalaya of Garhwal Himalaya in Uttarakhand (India) has a complex Physiographic features withdiversified climatic conditions and therefore it is suspect to environmental vulnerability. Thenatural disasters and also anthropogenic activities accelerate the rate of environmental vulnerability. To analyse the environmental vulnerability, we have used geoinformatics technologies and numerical models and it is adoptedby using Spatial Principal Component Analysis (SPCA). The model consist of many factors such as slope, landuse/landcover, soil, forest fire risk, landslide susceptibility zone, human population density and vegetation index. From this model, the environmental vulnerability integrated index (EVSI) is calculated for Pasol Gad Watershed of Garhwal Himalaya for the years 1987, 2000, and 2013 and the Vulnerability is classified into five levelsi.e. Very low, low, medium, high and very highby means of cluster principle. The resultsforeco-environmental vulnerability distribution in study area shows that medium, high and very high levels are dominating in the area and it is mainly caused by the anthropogenic activities and natural disasters. Therefore, proper management forconservation of resources is utmost necessity of present century. It is strongly believed that participation at community level along with social worker, institutions and Non-governmental organization (NGOs) have become a must to conserve and protect the environment.

Keywords: eco-environment vulnerability, spatial principal component analysis, remote sensing, geographic information system, institutions, Himalaya

Procedia PDF Downloads 255
10593 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants

Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul

Abstract:

In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.

Keywords: switching control, robust control, optimal control, nuclear power control

Procedia PDF Downloads 126
10592 Study of Interplanetary Transfer Trajectories via Vicinity of Libration Points

Authors: Zhe Xu, Jian Li, Lvping Li, Zezheng Dong

Abstract:

This work is to study an optimized transfer strategy of connecting Earth and Mars via the vicinity of libration points, which have been playing an increasingly important role in trajectory designing on a deep space mission, and can be used as an effective alternative solution for Earth-Mars direct transfer mission in some unusual cases. The use of vicinity of libration points of the sun-planet body system is becoming potential gateways for future interplanetary transfer missions. By adding fuel to cargo spaceships located in spaceports, the interplanetary round-trip exploration shuttle mission of such a system facility can also be a reusable transportation system. In addition, in some cases, when the S/C cruising through invariant manifolds, it can also save a large amount of fuel. Therefore, it is necessary to make an effort on looking for efficient transfer strategies using variant manifold about libration points. It was found that Earth L1/L2 Halo/Lyapunov orbits and Mars L2/L1 Halo/Lyapunov orbits could be connected with reasonable fuel consumption and flight duration with appropriate design. In the paper, the halo hopping method and coplanar circular method are briefly introduced. The former used differential corrections to systematically generate low ΔV transfer trajectories between interplanetary manifolds, while the latter discussed escape and capture trajectories to and from Halo orbits by using impulsive maneuvers at periapsis of the manifolds about libration points. In the following, designs of transfer strategies of the two methods are shown here. A comparative performance analysis of interplanetary transfer strategies of the two methods is carried out accordingly. Comparison of strategies is based on two main criteria: the total fuel consumption required to perform the transfer and the time of flight, as mentioned above. The numeric results showed that the coplanar circular method procedure has certain advantages in cost or duration. Finally, optimized transfer strategy with engineering constraints is searched out and examined to be an effective alternative solution for a given direct transfer mission. This paper investigated main methods and gave out an optimized solution in interplanetary transfer via the vicinity of libration points. Although most of Earth-Mars mission planners prefer to build up a direct transfer strategy for the mission due to its advantage in relatively short time of flight, the strategies given in the paper could still be regard as effective alternative solutions since the advantages mentioned above and longer departure window than direct transfer.

Keywords: circular restricted three-body problem, halo/Lyapunov orbit, invariant manifolds, libration points

Procedia PDF Downloads 240
10591 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 444