Search results for: salinity increase
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10686

Search results for: salinity increase

1836 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity

Procedia PDF Downloads 126
1835 The Need to Teach the Health Effects of Climate Change in Medical Schools

Authors: Ábrám Zoltán

Abstract:

Introduction: Climate change is now a major health risk, and its environmental and health effects have become frequently discussed topics. The consequences of climate change are clearly visible in natural disasters and excess deaths caused by extreme weather conditions. Global warming and the increasingly frequent extreme weather events have direct, immediate effects or long-term, indirect effects on health. For this reason, it is a need to teach the health effects of climate change in medical schools. Material and methods: We looked for various surveys, studies, and reports on the main pathways through which global warming affects health. Medical schools face the challenge of teaching the health implications of climate change and integrating knowledge about the health effects of climate change into medical training. For this purpose, there were organised World Café workshops for three target groups: medical students, academic staff, and practising medical doctors. Results: Among the goals of the research is the development of a detailed curriculum for medical students, which serves to expand their knowledge in basic education. At the same time, the project promotes the increase of teacher motivation and the development of methodological guidelines for university teachers; it also provides further training for practicing doctors. The planned teaching materials will be developed in a format suitable for traditional face-to-face teaching, as well as e-learning teaching materials. CLIMATEMED is a project based on the cooperation of six universities and institutions from four countries, the aim of which is to improve the curriculum and expand knowledge about the health effects of climate change at medical universities. Conclusions: In order to assess the needs, summarize the proposals, to develop the necessary strategy, World Café type, one-and-a-half to two-hour round table discussions will take place separately for medical students, academic staff, and practicing doctors. The CLIMATEMED project can facilitate the integration of knowledge about the health effects of climate change into curricula and can promote practical use. The avoidance of the unwanted effects of global warming and climate change is not only a public matter, but it is also a challenge to change our own lifestyle. It is the responsibility of all of us to protect the Earth's ecosystem and the physical and mental health of ourselves and future generations.

Keywords: climate change, health effects, medical schools, World Café, medical students

Procedia PDF Downloads 66
1834 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion

Authors: Gulay Oncu Ince, Sibel Karakaya

Abstract:

Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).

Keywords: caseinomacropeptide, protein profile, whey protein, yogurt

Procedia PDF Downloads 479
1833 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI

Authors: Rutej R. Mehta, Michael A. Chappell

Abstract:

Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.

Keywords: arterial spin labelling, dispersion, MRI, perfusion

Procedia PDF Downloads 361
1832 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 140
1831 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined the fiber orientation was not significantly different. It is believed the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: fiber orientation, reinforced ultra high performance concrete beams, shear, transverse steel

Procedia PDF Downloads 103
1830 Comparison of Soils of Hungarian Dry and Humid Oak Forests Based on Changes in Nutrient Content

Authors: István Fekete, Imre Berki, Áron Béni, Katalin Juhos, Marianna Makádi, Zsolt Kotroczó

Abstract:

The average annual precipitation significantly influences the moisture content of the soils and, through this, the decomposition of the organic substances in the soils, the leaching of nutrients from the soils, and the pH of the soils. Climate change, together with the lengthening of the vegetation period and the increasing CO₂ level, can increase the amount of biomass that is formed. Degradation processes, which accelerate as the temperature increases and slow down due to the drying climate, and the change in the degree of leaching can cancel out or strengthen each other's effects. In the course of our research, we looked for oak forests with climate-zonal soils where the geological, geographical and ecological background conditions are as similar as possible, apart from the different annual precipitation averages and the differences that can arise from them. We examined 5 dry and 5 humid Hungarian oak soils. Climate change affects the soils of drier and wetter forests differently. The aim of our research was to compare the content of carbon, nitrogen and some other nutrients, as well as the pH of the soils of humid and dry forests. Showing the effects of the drier climate on the tested soil parameters. In the case of the examined forest soils, we found a significant difference between the soils of dry and humid forests: in the case of the annual average precipitation values (p≥ 0.0001, for dry forest soils: 564±5.2 mm; for humid forest soils: 716±3.8 mm) for pH (p= 0.0004, for dry forest soils: 5.49±0.16; for wet forest soils: 5.36±0.21); for C content (p= 0.0054, for dry forest soils: 6.92%±0.59; for humid forest soils 3.09%±0.24), for N content (p= 0.0022, dry forest in the case of soils: 0.44%±0.047; in the case of humid forest soils: 0.23%±0.013), for the K content (p=0.0017, in the case of dry forest soils: 5684±732 (mg/kg); in the case of humid forest soils 2169±196 (mg/kg)), for the Ca content (p= 0.0096, for dry forest soils: 8207±2118 (mg/kg); for wet forest soils 957±320 (mg/kg)). No significant difference was found in the case of Mg. In a wetter environment, especially if the moisture content of the soil is also optimal for the decomposing organisms during the growing season, the decomposition of organic residues accelerates, and the processes of leaching from the soil are also intensified. The different intensity of the leaching processes is also well reflected in the quantitative differences of Ca and K, and in connection with these, it is also reflected in the difference in pH values. The differences in the C and N content can be explained by differences in the intensity of the decomposition processes. In addition to warming, drying is expected in a significant part of Hungary due to climate change. Thus, the comparison of the soils of dry and humid forests allows us to predict the subsequent changes in the case of the examined parameters.

Keywords: soil nutrients, precipitation difference, climate change, organic matter decomposition, leaching

Procedia PDF Downloads 62
1829 Effect of Mindfulness Training on Psychological Well-Being: An Experimental Study Using a Mobile App as Intervention

Authors: Beeto W. C. Leung, Nicole C. Y. Lee

Abstract:

It was well known that college students experienced a high level of stress and anxiety. College athletes, a special group of college students, may even encounter a higher level of pressure and distress due to their dual endeavors in academic and athletic settings. Due to the high demands and costs of mental health services, easily accessible, web-based self-help interventions are getting more popular. The aim of the present experimental study was to examine the potential intervention effect of a mindfulness-based self-help mobile App, called 'Smiling Mind', on mindfulness and psychological well-being. Forty-six college athletes, recruited from athletic teams of two local universities in Hong Kong, were randomly assigned to the Mindfulness App Group (MAG) and the Control Group (CG). All participants were administered the Mindful Attention Awareness Scale, Geriatric Depression Scale, and Perceived Stress Scale-10 before the study (Time 1, T1) and after the 4-week intervention (Time 2, T2). MAG was requested to use the app and follow the instructions every day for at least 5 days per week. Participants were also asked to record their daily app usage time. Results showed that, for MAG, from T1 to T2, mindfulness has been increased from 3.25 to 3.92; depressive symptoms and stress has been significantly decreased from 8.6 to 5.1 and 24.8 to 13.5 respectively while for the CG, mindfulness has been decreased slightly from 3.29 to 3.13; depressive symptoms and stress has been slightly increased from 7.1 to 7.3 and 24.1 to 27.1 respectively. Three mixed-design ANOVAs with time (T1, T2) as the within-subjects factor and intervention group (MAG, CG) as the between-subjects factor revealed a main effect of time on mindfulness, F(1, 41) = 10.28, p < 0.01, depressive symptoms, F(1, 41) = 6.55, p < 0.02 and stress, F(1, 41) = 16.96, p < 0.001 respectively. Both predicted interaction between time and intervention group on mindfulness, F(1, 41) = 26.6, p < 0.001, ηp 2 =0.39, depressive symptoms, F(1, 41) = 8.00, p < 0.01, ηp 2 =0.16 and Stress F(1, 41) = 49.3, p < 0.001, ηp 2 =0.55 were significant meaning that participants using the Mindfulness Mobile App in the intervention did experienced a significant increase in mindfulness and significant decrease in depressive symptoms and perceived level of stress after the 4-week intervention when compared with the control group. The present study provided encouraging empirical support for using Smiling Mind, a self-help mobile app, to promote mindfulness and mental health in a cost-effective way. Further studies should examine the potential use of Smiling Mind in different samples, including children and adolescence, as well as, investigate the lasting effects of using the app on other psychosocial outcomes such as emotional regulations.

Keywords: college athletes, experimental study, mindfulness mobile apps, psychological well-being

Procedia PDF Downloads 103
1828 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 121
1827 Beyond the “Breakdown” of Karman Vortex Street

Authors: Ajith Kumar S., Sankaran Namboothiri, Sankrish J., SarathKumar S., S. Anil Lal

Abstract:

A numerical analysis of flow over a heated circular cylinder is done in this paper. The governing equations, Navier-Stokes, and energy equation within the Boussinesq approximation along with continuity equation are solved using hybrid FEM-FVM technique. The density gradient created due to the heating of the cylinder will induce buoyancy force, opposite to the direction of action of acceleration due to gravity, g. In the present work, the flow direction and the direction of buoyancy force are taken as same (vertical flow configuration), so that the buoyancy force accelerates the mean flow past the cylinder. The relative dominance of the buoyancy force over the inertia force is characterized by the Richardson number (Ri), which is one of the parameter that governs the flow dynamics and heat transfer in this analysis. It is well known that above a certain value of Reynolds number, Re (ratio of inertia force over the viscous forces), the unsteady Von Karman vortices can be seen shedding behind the cylinder. The shedding wake patterns could be seriously altered by heating/cooling the cylinder. The non-dimensional shedding frequency called the Strouhal number is found to be increasing as Ri increases. The aerodynamic force coefficients CL and CD are observed to change its value. In the present vertical configuration of flow over the cylinder, as Ri increases, shedding frequency gets increased and suddenly drops down to zero at a critical value of Richardson number. The unsteady vortices turn to steady standing recirculation bubbles behind the cylinder after this critical Richardson number. This phenomenon is well known in literature as "Breakdown of the Karman Vortex Street". It is interesting to see the flow structures on further increase in the Richardson number. On further heating of the cylinder surface, the size of the recirculation bubble decreases without loosing its symmetry about the horizontal axis passing through the center of the cylinder. The separation angle is found to be decreasing with Ri. Finally, we observed a second critical Richardson number, after which the the flow will be attached to the cylinder surface without any wake behind it. The flow structures will be symmetrical not only about the horizontal axis, but also with the vertical axis passing through the center of the cylinder. At this stage, there will be a "single plume" emanating from the rear stagnation point of the cylinder. We also observed the transition of the plume is a strong function of the Richardson number.

Keywords: drag reduction, flow over circular cylinder, flow control, mixed convection flow, vortex shedding, vortex breakdown

Procedia PDF Downloads 389
1826 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 534
1825 Spatio-Temporal Analysis of Land Use Land Cover Change Using Remote Sensing and Multispectral Satellite Imagery of Islamabad Pakistan

Authors: Basit Aftab, Feng Zhongke

Abstract:

The land use/land cover change (LULCC) is a significant indicator sensitive to an area's environmental changes. As a rapidly developing capital city near the Himalayas Mountains, the city area of Islamabad, Pakistan, has expanded dramatically over the past 20 years. In order to precisely measure the impact of urbanization on the forest and agricultural lands, the Spatio-temporal analysis of LULCC was utilized, which helped us to know the impacts of urbanization, especially on ecosystem processes, biological cycles, and biodiversity. The Islamabad region's Multispectral Satellite Images (MSI) for 2000, 2010, and 2020 were employed as the remote sensing data source. Local documents of city planning, forest inventory and archives in the agriculture management departments were included to verify the image-derived result. The results showed that from 2000 to 2020, the built-up area increased to 48.3% (505.02 Km2). Meanwhile, the forest, agricultural, and barre land decreased to 28.9% (305.64 Km2), 10.04% (104.87 Km2), and 11.61% (121.30 Km2). The overall percentage change in land area between 2000 – 2020 was recorded maximum for the built-up (227.04%). Results revealed that the increase in the built-up area decreased forestland, barren, and agricultural lands (-0.36, -1.00 & -0.34). The association of built-up with respective years was positively linear (R2 = 0.96), whereas forestland, agricultural, and barren lands association with years were recorded as negatively linear (R2 = -0.29, R2 = -0.02, and R2 = -0.96). Large-scale deforestation leads to multiple negative impacts on the local environment, e.g., water degradation and climate change. It would finally affect the environment of the greater Himalayan region in some way. We further analyzed the driving forces of urbanization. It was determined by economic expansion, climate change, and population growth. We hope our study could be utilized to develop efforts to mitigate the consequences of deforestation and agricultural land damage, reducing greenhouse gas emissions while preserving the area's biodiversity.

Keywords: urbanization, Himalaya mountains, landuse landcover change (LULCC), remote sensing., multi-spectral satellite imagery

Procedia PDF Downloads 13
1824 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy

Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak

Abstract:

In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.

Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes

Procedia PDF Downloads 273
1823 Place-Based Practice: A New Zealand Rural Nursing Study

Authors: Jean Ross

Abstract:

Rural nursing is not an identified professional identity in the UK, unlike the USA, Canada, and Australia which recognizes rural nursing as a specialty scope of practice. In New Zealand rural nursing is an underrepresented aspect of nursing practice, is misunderstood and does not fit easily within the wider nursing profession and policies governing practice. This study situated within the New Zealand context adds to the international studies’ aligned with rural nursing practice. The study addresses a gap in the literature by striving to identify and strengthen the awareness of and increase rural nurses’ understanding and articulation of their changing and adapting identity and furthermore an opportunity to appreciate their contribution to the delivery of rural health care. In addition, this study adds to the growing global rural nursing knowledge and theoretical base. This research is a continuation of the author’s academic involvement and ongoing relationships with the rural nursing sector, national policy analysts and health care planners since the 1990s. These relationships have led to awareness, that despite rural nurses’ efforts to explain the particular nuances which make up their practice, there has been little recognition by profession to establish rural nursing as a specialty. The research explored why nurses’ who practiced in the rural Otago region of New Zealand, between the 1990s and early 2000s moved away from the traditional identity as a district, practice or public health nurse and looked towards a more appropriate identity which reflected their emerging practice. This qualitative research situated within the interpretive paradigm embeds this retrospective study within the discipline of nursing and engages with the concepts of place and governmentality. National key informant and Otago regional rural nurse interviews generated data and were analyzed using thematic analysis. Stemming from the analyses, an analytical diagrammatic matrix was developed demonstrating rural nursing as a ‘place–based practice’ governed both from within and beyond location presenting how the nurse aligns the self in the rural community as a meaningful provider of health care. Promoting this matrix may encourage a focal discussion point within the international spectrum of nursing and likewise between rural and non-rural nurses which it is hoped will generate further debate in relation to the different nuances aligned with rural nursing practice. Further, insights from this paper may capture key aspects and issues related to identity formation in respect to rural nurses, from the UK, New Zealand, Canada, USA, and Australia.

Keywords: matrix, place, nursing, rural

Procedia PDF Downloads 127
1822 Plant Extracts: Chemical Analysis, Investigation of Antioxidant, Antibacterial, and Antifungal Activities and Their Applications in Food Packaging Materials

Authors: Mohammed Sabbah, Asmaa Al-Asmar, Doaa Abu-Hani, Fuad Al-Rimawi

Abstract:

Plant extracts are an increasingly popular natural product with a wide range of potential applications in food, industrial, and health care industries. They are rich in polyphenolic compounds and flavonoids, which have been demonstrated to possess a variety of beneficial properties, including antimicrobial and antioxidant activity. Plant extracts have been found to possess antimicrobial activity against a variety of foodborne pathogens and can be used as a natural preservative to extend the shelf life of food products. They have also strong antioxidant activity, which can reduce the formation of free radicals and oxidation of food components. Recently there is an increase interest in bio-based polymers to be used as innovative “bioplastics” for industrial exploitation e.g. packaging materials for food products. Additionally, incorporation of active compounds (e.g. antioxidants and antimicrobials) in bio-polymer materials is of particular interest since such active polymers can be used as active packaging materials (with antimicrobial and antioxidant activity). In this work, different plant extracts have been characterized for their phenolic compounds, flavonoids content, antioxidant activity (both as free radical scavenging ability and reducing ability), and antimicrobial activity against gram positive and negative bacteria (Escherichia coli; Staphylococcus aureus, and Pseudomonas aeruginosa) as well as antifungal activities (against yeast, mold and Botrytis cinera/a plant pathogen). Results showed that many extracts are rich with polyphenolic compounds and flavonoids and have strong antioxidant activities, and rich with phytochemicals (e.g. rutin, quercetin, oleuropein, tyrosol and hydroxytyrosol). Some extracts showed antibacterial activity against both gram positive and negative bacteria as well as antifungal activities and can work, therefore, as preservatives for food or pharmaceutical industries. As an application, two extracts were used as additive to pectin-based packaging film, and results showed that the addition of these extracts significantly improve their functionality as antimicrobial and antioxidant activity. These biomaterials, therefore can be used in food packaging materials to extend the shelf life of food products.

Keywords: plant extracts, antioxidants, flavonoids, bioplastic, edible biofilm, packaging materials

Procedia PDF Downloads 59
1821 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 272
1820 An Investigation of the Compliance of Kermanian College Students' Diet with Who/Fao Nutrition Targets

Authors: Farideh Doostan, Sahar Mohseni Taklloo, Mohammad Nosrati

Abstract:

Chronic diseases are non-communicable and largely preventable by lifestyle changes including healthy diet consumption. They are the most common cause of death in the world and projected to increase by 15% globally between 2010 and 2020.The hazardous effects of behavioral and dietary risk factors on chronic disease have been established in prospective cohort studies and randomized trials. Because of some changes occur in college students’ lifestyle, assessment of dietary risk factors is important in these populations. Objective: This research was the first study that conducted to evaluate dietary intakes of Kermanian college students with WHO/FAO nutritional objectives. Material and Methods: In this descriptive cross-sectional study, 229 healthy college students of health faculty in Kerman University of Medical Sciences that do not intake any medical drugs were recruited using multistage sampling in 2013.Usual dietary intake was collected using a valid Food Frequency Questionnaire (FFQ) and diet quality was calculated based on WHO nutrient goals. To analysis of data between two groups, independent sample t. test and man whitney were applied. Results: Two hundred and twenty-nine college students; 151 females (65.9%) and 78 males (34.1%), the mean age of 21.9 years were studied. The mean of the Body Mass Index (Kg/m2) and Waist Circumference (cm) in males were 22.34 ±3.52 and 80.76±11.16 and in females were 21.19±2.62 and 73.67±7.65 respectively. Mean of daily cholesterol intake in males was significantly more than females (305±101 VS 268±98; P=0.008) and more than WHO/FAO recommendation (less than 300 mg/day). The mean of daily sodium intake in men and women were 10.4±1 and 10.9±5.3 respectively. These amounts were more than WHO/FAO recommendation (less than 2g/day). In addition, women were consumed fruit and vegetables more than men (839±336 VS 638±281; p ‹ 0.001) and these amounts were more than WHO/FAO recommendation (more than 400g/day) in both groups. Other intake indices were in the range of WHO/FAO recommendations, So that Percent of calories intake from total fat, saturated fatty acids, polyunsaturated fatty acids and added sugar were in compliance with WHO/FAO recommendations. Conclusion: Cholesterol intake in men and sodium intake in all participants were more than WHO/FAO recommendation. These dietary components are the most important causes of cardiovascular disease (one of the main causes of death in our population). These results indicated that proper nutritional education and interventions are needed in this population.

Keywords: college students, food intake, WHO /FAO nutrient intake goals, Kerman

Procedia PDF Downloads 390
1819 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 108
1818 Effect of Spirulina Supplementation on Growth Performance and Body Conformation of Two Omani Goat Breeds

Authors: Fahad Al Yahyaey, Ihab Shaat, Russell Bush

Abstract:

This study was conducted at the Livestock Research Centre, Ministry of Agriculture and Fisheries, Oman, on two local goat breeds (Jabbali and Sahrawi) due to their importance to Omani livestock production and food security. The Jabbali is characterized by increased growth rates and a higher twinning rate, while the Sahrawi has increased milk production. The aim of the study was to investigate the effect of Spirulina supplementation on live weight (BWT), average daily gain (ADG), and body conformation measurements; chest girth (CG), wither height (WH), body length (BL), and body condition score (BCS). Thirty-six males (approximately nine-months-old and 16.44 ± 0.33 kg average of initial body weight) were used across an eleven-week study from November–February 2019-2020. Each breed was divided into three groups (n = 6/group) and fed one of three rations: (1) concentrate mixture (Control) with crude protein 14% and energy 11.97% MJ/kg DM; (2) the same concentrate feed with the addition of 2 gm /capita daily Spirulina platensis (Treatment 1) and (3) the same concentrate feed with the addition of 4 gm /capita daily Spirulina platensis (Treatment 2). Analysis of weekly data collections for all traits indicated a significant effect of feeding Spirulina on all the studied traits except WH and BL. Analysis of variance for fixed effects in this study (damage and kid birth type i.e., single, twin or triple) were not significant for all studied traits. However, the breed effect was highly significant (P < 0.001) on BWT, ADG, BCS, and CG traits. On the other hand, when the analysis was done for the treatment effect within breeds for ADG, the Sahrawi breed had a significant effect (P < 0.05) at 56.52, 85.51, and 85.50 g/day for control, treatment 1 and treatment 2, respectively. This is a 51% difference between the control and treatment 1 (2 gm /capita). Whereas for the Jabbali breed, the treatment effect was not significant for ADG (P =0.55), and the actual ADG was 104.59, 118.84, and 114.25 g/day for control, treatment 1, and treatment 2, respectively, providing a 14% difference between the control group and the treated group (4 gm /capita). These findings indicate using Spirulina supplementation in Omani goat diets is recommended at 2 gm per capita as there was no benefit in feeding at 4 gm per capita for either breed. Farmers feeding Spirulina supplementation to kids after weaning at six-months could increase their herd performance and growth rate and facilitate buck selection at an earlier age.

Keywords: body conformation, goats, live weight, spirulina

Procedia PDF Downloads 98
1817 Hyperthyroidism in a Private Medical Services Center, Addis Ababa: A 5-Year Experience

Authors: Ersumo Tessema, Bogale Girmaye Tamrat, Mohammed Burka

Abstract:

Background: Hyperthyroidism is a common thyroid disorder especially in women and characterized by increased thyroid hormone synthesis and secretion. The disorder manifests predominantly as Graves’ disease in iodine-sufficient areas and has increasing prevalence in iodine-deficient countries in patients with nodular thyroid disease and following iodine fortification. In Ethiopia, the magnitude of the disorder is unknown and, in Africa, due to scarcity of resources, its management remains suboptimal. Objective: The aim of this study was to analyze the pattern and management of patients with hyperthyroidism at the United Vision Medical Services Center, Addis Ababa between August 30, 2013, and February 1, 2018. Patients and methods: The study was a retrospective analysis of medical records of all patients with hyperthyroidism at the United Vision Private Medical Services Center, Addis Ababa. A questionnaire was filled out; the collected data entered into a computer and statistically analyzed using the SPSS package. The results were tabulated and discussed with literature review. Results: A total of 589 patients were included in this study. The median age was 40 years, and the male to female ratio was 1.0:7.9. Most patients (93%) presented with goiter and the associated features of toxic goiter except weight loss, sweating and tachycardia were uncommon. Majority of patients presented more than two years after the onset of their presenting symptoms. The most common physical finding (91%), as well as diagnosis, was toxic nodular goiter. The most frequent (83%) derangement in the thyroid function tests was a low thyroid-stimulating hormone, and the most commonly (94%) used antithyroid drug was a propylthiouracil. The most common (96%) surgical procedure in 213 patients was a near-total thyroidectomy with a postoperative course without incident in 92% of all the patients. Conclusion: The incidence and prevalence of hyperthyroidism are apparently on the increase in Addis Ababa, which may be related to the existing severe iodine-deficiency and or the salt iodation program (iodine-induced hyperthyroidism). Hyperthyroidism predominantly affects women and, in surgical services, toxic nodular goiter is more common than diffuse goiter, and the treatment of choice in experienced hands is a near-total thyroidectomy.

Keywords: Ethiopia, grave’s disease, hyperthyroidism, toxic nodular goiter

Procedia PDF Downloads 165
1816 Cleaning of Polycyclic Aromatic Hydrocarbons (PAH) Obtained from Ferroalloys Plant

Authors: Stefan Andersson, Balram Panjwani, Bernd Wittgens, Jan Erik Olsen

Abstract:

Polycyclic Aromatic hydrocarbons are organic compounds consisting of only hydrogen and carbon aromatic rings. PAH are neutral, non-polar molecules that are produced due to incomplete combustion of organic matter. These compounds are carcinogenic and interact with biological nucleophiles to inhibit the normal metabolic functions of the cells. Norways, the most important sources of PAH pollution is considered to be aluminum plants, the metallurgical industry, offshore oil activity, transport, and wood burning. Stricter governmental regulations regarding emissions to the outer and internal environment combined with increased awareness of the potential health effects have motivated Norwegian metal industries to increase their efforts to reduce emissions considerably. One of the objective of the ongoing industry and Norwegian research council supported "SCORE" project is to reduce potential PAH emissions from an off gas stream of a ferroalloy furnace through controlled combustion. In a dedicated combustion chamber. The sizing and configuration of the combustion chamber depends on the combined properties of the bulk gas stream and the properties of the PAH itself. In order to achieve efficient and complete combustion the residence time and minimum temperature need to be optimized. For this design approach reliable kinetic data of the individual PAH-species and/or groups thereof are necessary. However, kinetic data on the combustion of PAH are difficult to obtain and there is only a limited number of studies. The paper presents an evaluation of the kinetic data for some of the PAH obtained from literature. In the present study, the oxidation is modelled for pure PAH and also for PAH mixed with process gas. Using a perfectly stirred reactor modelling approach the oxidation is modelled including advanced reaction kinetics to study influence of residence time and temperature on the conversion of PAH to CO2 and water. A Chemical Reactor Network (CRN) approach is developed to understand the oxidation of PAH inside the combustion chamber. Chemical reactor network modeling has been found to be a valuable tool in the evaluation of oxidation behavior of PAH under various conditions.

Keywords: PAH, PSR, energy recovery, ferro alloy furnace

Procedia PDF Downloads 259
1815 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 120
1814 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets

Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li

Abstract:

Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.

Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet

Procedia PDF Downloads 118
1813 Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation

Authors: Denise Levy, Anna Lucia C. H. Villavicencio

Abstract:

Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development.

Keywords: food irradiation, multimedia learning tools, nuclear science, society and education

Procedia PDF Downloads 238
1812 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles

Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas

Abstract:

The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.

Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden

Procedia PDF Downloads 350
1811 Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing

Authors: T. Urushadze, R. Khvedelidze, L. Kutateladze, M. Jobava, T. Burduli, T. Alexidze

Abstract:

There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified.

Keywords: amylase, glucose hydrolisis, stability, starch

Procedia PDF Downloads 338
1810 Genetic Improvement Potential for Wood Production in Melaleuca cajuputi

Authors: Hong Nguyen Thi Hai, Ryota Konda, Dat Kieu Tuan, Cao Tran Thanh, Khang Phung Van, Hau Tran Tin, Harry Wu

Abstract:

Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation.

Keywords: acoustic velocity, age-age correlation, bark thickness, heritability, Melaleuca cajuputi, stiffness, thinning effect

Procedia PDF Downloads 167
1809 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy

Authors: A. Hakem, Y. Bouafia

Abstract:

Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.

Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon

Procedia PDF Downloads 245
1808 Effect of Auraptene on the Enzymatic Glutathione Redox-System in Nrf2 Knockout Mice

Authors: Ludmila A. Gavriliuc, Jerry McLarty, Heather E. Kleiner, J. Michael Mathis

Abstract:

Abstract -- Background: The citrus coumarine Auraptene (Aur) is an effective chemopreventive agent, as manifested in many models of diseases and cancer. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1, and peroxiredoxin 1, by activating the antioxidant response element (ARE). Genetic and biochemical evidence has demonstrated that glutathione (GSH) and glutathione-dependent enzymes, glutathione reductase (GR), glutathione peroxidases (GPs), glutathione S-transferases (GSTs) are responsible for the control of intracellular reduction-oxidation status and participate in cellular adaptation to oxidative stress. The effect of Aur on the activity of GR, GPs (Se-GP and Se-iGP), and content of GSH in the liver, kidney, and spleen is insufficiently explored. Aim: Our goal was the examination of the Aur influence on the redox-system of GSH in Nrf2 wild type and Nrf2 knockout mice via activation of Nrf2 and ARE. Methods: Twenty female mice, 10 Nrf2 wild-type (WT) and 10 Nrf2 (-/-) knockout (KO), were bred and genotyped for our study. The activity of GR, Se-GP, Se-iGP, GST, G6PD, CytP450 reductase, catalase (Cat), and content of GSH were analyzed in the liver, kidney, and spleen using Spectrophotometry methods. The results of the specific activity of enzymes and the amount of GSH were analyzed with ANOVA and Spearman statistical methods. Results: Aur (200 mg/kg) treatment induced hepatic GST, GR, Se-GP activity and inhibited their activity in the spleen of mice, most likely via activation of the ARE through Nrf2. Activation in kidney Se-GP and G6PD by Aur is also controlled, apparently through Nrf2. Results of the non-parametric Spearman correlation analysis indicated the strong positive correlation between GR and G6PD only in the liver in WT control mice (r=+0.972; p < 0.005) and in the kidney KO control mice (r=+0.958; p < 0.005). The observed low content of GSH in the liver of KO mice indicated an increase in its participation in the neutralization of toxic substances with the absence of induction of GSH-dependent enzymes, such as GST, GR, Se-GP, and Se-iGP. Activation of CytP450 in kidney and spleen and Cat in the liver in KO mice probably revealed another regulatory mechanism for these enzymes. Conclusion: Thereby, obtained results testify that Aur can modulate the activity of genes and antioxidant enzymatic redox-system of GSH, responsible for the control of intracellular reduction-oxidation status.

Keywords: auraptene, glutathione, GST, Nrf2

Procedia PDF Downloads 137
1807 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 96