Search results for: white light emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5845

Search results for: white light emission

5005 History of Textiles and Fashion: Gender Symbolism in the Context of Colour

Authors: Damayanthie Eluwawalage

Abstract:

Historically, the color-coded attire demarcated differences, for example, differences in social position and differences in gender, etc. Distinctive colors are worn by different classes in medieval England. By the twentieth-century Western society, certain colors were firmly associated with the specific gender; as pink for girls, and blue for boys. The color-coded gender phenomenon was a novelty at the turn of the twentieth-century and became widely practiced after World War II. Prior to that era, there were no distinctions or differences in the dress of younger children, in relation to their gender. In the nineteenth century, pink suits were highly acceptable for gentlemen’s attire. Frenchmen in the eighteenth-century wore colors with an infinite range of hues like pink, plum, white, cream, blue, yellow, puce and sea green. Nineteenth-century European male austerity, primarily caused by the usage of sombre colors such as black, white and grey, has been described as an element for dignity, control and morality. In the nineteenth century, there were many color-associated distinctions, as certain colors were reserved for the unmarried, the single or the aged. Two luminous colors in one dress was ‘vulgar’ and yellow was generally regarded as unladylike. Yellow was the color utilised for most correctional attire. Orange was prohibited for the unmarried. Fashionable dressing in the nineteenth century was more gender-differentiated than in previous centuries. Masculine austerity, emphasized a shift in class relations. As a result of that shift, male attire became more uniform, homogeneous and integrated (amongst the classes), than its traditional hierarchal approach.

Keywords: textiles, fashion, gender symbolism, color

Procedia PDF Downloads 488
5004 Research on the Influencing Factors of Residents' Energy Consumption and Carbon Emission in Different Types of Communities - Taking Caijia New Town of Chongqing as an Example

Authors: Shuo Lei

Abstract:

In order to explore the influencing factors of residents' energy consumption and carbon emissions in different types of communities, this paper conducted research on residents' household energy consumption and carbon emissions in different types of communities in Caijia New Town, Chongqing. By calculating the carbon emissions of residents' household energy consumption, we analyze the structure and characteristics of the energy consumption of households in each type of community. At the same time, the key influencing factors affecting the carbon emissions of residents' energy consumption in Caijia New Town are analyzed from both social and spatial perspectives. The results of the study show that: (1) different types of neighborhoods have a clustering and locking effect on different types of resident groups, which makes the distribution of household energy consumption and carbon emissions closely related to the characteristics of the residents; (2) social and spatial factors have an impact on the residents' energy consumption and carbon emissions, and there is a significant difference in the carbon emission levels of different types of neighborhoods. Accordingly, an identification method is proposed to recognize the carbon emissions of Caijia New Town and even Chongqing City, which provides technical reference for the sustainable planning of low-carbon communities.

Keywords: community type, residential energy consumption and carbon emissions, residential differentiation, influencing factors, low-carbon community

Procedia PDF Downloads 18
5003 Teachers' Perceptions of Physical Education and Sports Calendar and Conducted in the Light of the Objective of the Lesson Approach Competencies

Authors: Chelali Mohammed

Abstract:

In the context of the application of the competency-based approach in the system educational Algeria, the price of physical education and sport must privilege the acquisition of learning approaches and especially the approach science, which from problem situations, research and develops him information processing and application of knowledge and know-how in new situations in the words of ‘JOHN DEWEY’ ‘learning by practice’. And to achieve these goals and make teaching more EPS motivating, consistent and concrete, it is appropriate to perform a pedagogical approach freed from the constraints and open to creativity and student-centered in the light of the competency approach adopted in the formal curriculum. This approach is not unusual, but we think it is a highly professional nature requires the competence of the teacher.

Keywords: approach competencies, physical, education, teachers

Procedia PDF Downloads 601
5002 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 87
5001 Ecological Studies on Bulinus truncatus Snail the Intermediate Host of Schistosoma haematobium, in White Nile State, Sudan

Authors: Mohammed Hussein Eltoum Salih

Abstract:

This study was conducted in four villages, namely: Jadeed, Alandraba, Um Gaar, and EL Shetabe in the White Nile State Sudan, to determine the ecological factors; water vegetations, physical and chemical properties of the water in Snails habitat. Bulinus truncatus, which act as an intermediate host for S. haematobium, were collected from water bodies adjacent to study villages where the residents were suspected to swim, and humans get in contact with water for various purposes. Water samples from the stretches were collected and then measured for parameters that are indicative of the quality of water and sustaining the survival of snails and would confirm even further if the contact between humans and water had taken place. The parameters measured included water conductivity, pH, dissolved oxygen, calcium, and magnesium content. Also, a single water sample from each contact site was collected for microbiological tests. The result revealed that the B. truncatus showed that these animals were fewer and free of infection and their sites of the collection were dense with different plant species making them suitable to harbor snails. Moreover, the results of microbial tests showed that there was higher bacterial contamination. Also, physical and chemical analysis of water sample of contact sites revealed that there were significant differences (p < 0.05) in water pH, calcium, and magnesium content between sites of study villages, and these were discussed in relation to factors suitable for the intermediate hosts and thus for the transmission of the S. haematobium disease.

Keywords: health, parasitology, Schistosoma, snails

Procedia PDF Downloads 145
5000 Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes

Authors: Karima Benfadel, Lamia Talbi, Sabiha Anas Boussaa, Afaf Brik, Assia Boukezzata, Yahia Ouadah, Samira Kaci

Abstract:

In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications.

Keywords: CO₂ conversion, Cu₂S photocathode, silicone nanostructured, electrochemistry

Procedia PDF Downloads 75
4999 Design and Analysis of Crankshaft Using Al-Al2O3 Composite Material

Authors: Palanisamy Samyraj, Sriram Yogesh, Kishore Kumar, Vaishak Cibi

Abstract:

The project is about design and analysis of crankshaft using Al-Al2O3 composite material. The project is mainly concentrated across two areas one is to design and analyze the composite material, and the other is to work on the practical model. Growing competition and the growing concern for the environment has forced the automobile manufactures to meet conflicting demands such as increased power and performance, lower fuel consumption, lower pollution emission and decrease noise and vibration. Metal matrix composites offer good properties for a number of automotive components. The work reports on studies on Al-Al2O3 as the possible alternative material for a crank shaft. These material have been considered for use in various components in engines due to the high amount of strength to weight ratio. These materials are significantly taken into account for their light weight, high strength, high specific modulus, low co-efficient of thermal expansion, good air resistance properties. In addition high specific stiffness, superior high temperature, mechanical properties and oxidation resistance of Al2O3 have developed some advanced materials that are Al-Al2O3 composites. Crankshafts are used in automobile industries. Crankshaft is connected to the connecting rod for the movement of the piston which is subjected to high stresses which cause the wear of the crankshaft. Hence using composite material in crankshaft gives good fuel efficiency, low manufacturing cost, less weight.

Keywords: metal matrix composites, Al-Al2O3, high specific modulus, strength to weight ratio

Procedia PDF Downloads 272
4998 Photoelectrical Stimulation for Cancer Therapy

Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın

Abstract:

Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.

Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels

Procedia PDF Downloads 176
4997 Seismic Behavior and Loss Assessment of High–Rise Buildings with Light Gauge Steel–Concrete Hybrid Structure

Authors: Bing Lu, Shuang Li, Hongyuan Zhou

Abstract:

The steel–concrete hybrid structure has been extensively employed in high–rise buildings and super high–rise buildings. The light gauge steel–concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a new–type steel–concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high–rise buildings with three different concrete hybrid structures were investigated through finite element software, respectively. The three concrete hybrid structures are reinforced concrete column–steel beam (RC‒S) hybrid structure, concrete–filled steel tube column–steel beam (CFST‒S) hybrid structure, and tubed concrete column–steel beam (TC‒S) hybrid structure. The nonlinear time-history analysis of three high–rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high–rise buildings were superior. Under extremely rare earthquakes, the maximum inter–storey drifts of three high–rise buildings are significantly lower than 1/50. The inter–storey drift and floor acceleration of high–rise building with CFST‒S hybrid structure were bigger than those of high–rise buildings with RC‒S hybrid structure, and smaller than those of high–rise building with TC‒S hybrid structure. Then, based on the time–history analysis results, the post-earthquake repair cost ratio and repair time of three high–rise buildings were predicted through an economic performance analysis method proposed in FEMA‒P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC‒S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.

Keywords: seismic behavior, loss assessment, light gauge steel–concrete hybrid structure, high–rise building, time–history analysis

Procedia PDF Downloads 182
4996 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis

Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik

Abstract:

Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.

Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy

Procedia PDF Downloads 223
4995 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 224
4994 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa

Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka

Abstract:

Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.

Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise

Procedia PDF Downloads 203
4993 Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria

Authors: Abegunde Linda, Adedeji Oluwatola

Abstract:

It has become increasingly evident that large developments influence the climate within the immediate region and there are concerns that rising temperatures over developed areas could have negative impact and increase living discomfort within city boundaries. Temperature trends in Ibadan city have received minor attention, yet the area has experienced heavy urban expansion between 1972 and 2014. This research aims at examining the impact of landuse change on temperature knowing that the built environment absorbs and stores solar energy, the temperature in cities can be several degrees higher than in adjacent rural areas. This is known as the urban heat island (UHI) effect. The Landsat imagery were used to examine the landuse change for a time period of 42years (1972-2014) and Land surface temperature (LST) was obtained by converting the thermal band to a surface temperature map and zonal statistic analyses was further used to examine the relationship between landuse and temperature emission. The results showed that the settlement area increased by 200km2 while the area covered by vegetation also reduced to about 42.6% during the study period. The spatial and temporal trends of temperature are related to the gradual change in urban landcover and the settlement area has the highest emission of land surface temperature. This research provides useful insight into the temporal behavior of the Ibadan city.

Keywords: landuse, LST, remote sensing, UHI

Procedia PDF Downloads 271
4992 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic

Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony

Abstract:

The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.

Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight

Procedia PDF Downloads 72
4991 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure

Authors: Zekun Lin, Xun Li

Abstract:

Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.

Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling

Procedia PDF Downloads 155
4990 The Value of Serum Procalcitonin in Patients with Acute Musculoskeletal Infections

Authors: Mustafa Al-Yaseen, Haider Mohammed Mahdi, Haider Ali Al–Zahid, Nazar S. Haddad

Abstract:

Background: Early diagnosis of musculoskeletal infections is of vital importance to avoid devastating complications. There is no single laboratory marker which is sensitive and specific in diagnosing these infections accurately. White blood cell count, erythrocyte sedimentation rate, and C-reactive protein are not specific as they can also be elevated in conditions other than bacterial infections. Materials Culture and sensitivity is not a true gold standard due to its varied positivity rates. Serum Procalcitonin is one of the new laboratory markers for pyogenic infections. The objective of this study is to assess the value of PCT in the diagnosis of soft tissue, bone, and joint infections. Patients and Methods: Patients of all age groups (seventy-four patients) with a diagnosis of musculoskeletal infection are prospectively included in this study. All patients were subjected to White blood cell count, erythrocyte sedimentation rate, C-reactive protein, and serum Procalcitonin measurements. A healthy non infected outpatient group (twenty-two patients) taken as a control group and underwent the same evaluation steps as the study group. Results: The study group showed mean Procalcitonin levels of 1.3 ng/ml. Procalcitonin, at 0.5 ng/ml, was (42.6%) sensitive and (95.5%) specific in diagnosing of musculoskeletal infections with (positive predictive value of 87.5% and negative predictive value of 48.3%) and (positive likelihood ratio of 9.3 and negative likelihood ratio of 0.6). Conclusion: Serum Procalcitonin, at a cut – off of 0.5 ng/ml, is a specific but not sensitive marker in the diagnosis of musculoskeletal infections, and it can be used effectively to rule in the diagnosis of infection but not to rule out it.

Keywords: procalcitonin, infection, labratory markers, musculoskeletal

Procedia PDF Downloads 162
4989 Film Aesthetics: Light as a Question of Existence in the Cinema of Apichatpong Weerasethakul

Authors: Nadia Konstantina Zygouri

Abstract:

This paper aims to provide a concise analysis of the symbolic nature of cinematic light portrayed in Apichatpong Weerasethakul's film Cemetery of Splendour (2015). The study explores the philosophical hypostasis of lighting mechanisms, the idea of which is based on political motives and, in addition, metaphysical theories originating from the Isan region of Thailand. In the film, the colourful hospital space and narcoleptic soldiers represent the deep and tumultuous history of the Thai nation, revealing a symbolic allegory through an incurable disease that the protagonists suffer from, addressing with this metaphor a collective political apathy. Specifically, the film follows Jen, a woman with a leg disability who takes care of Itt, an ex-soldier fallen into narcolepsy amidst a multi-coloured roomful of other comatose soldiers. The film's central theme, as well as the central setting, concerns an abandoned former school now used as a treatment clinic for military patients, each connected to a mechanism of light that can affect their dreams while sleeping. The audience later discovers from two mythological figures emerging from Thailand's ancient religious past that the hospital grounds are built over the ruins of an ancient kingdom's cemetery. The symbolic political implication is that ancient rulers have captured the soldiers’ spirits to fight their eternal battles, leaving their unconscious bodies in torpor, as similar politics of the past and present affect the nation to this day and enforce political apathy. In a contrasting tone, the colourful tubes are present to relieve the soldiers' symptoms and create better memories in their subconscious minds. As a result, the concluding argument of this hypothesis places Apichatpong's direction of cinematic light towards a philosophical and political commentary that, although derived from ancient national history, remains thoroughly contemporary.

Keywords: Apichatpong Weerasethakul, cemetery of Splendour, filmosophy, politics, aesthetics, direction of photography, light in cinema, metaphysics, visual philosophy

Procedia PDF Downloads 15
4988 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 282
4987 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 151
4986 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 174
4985 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film

Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa

Abstract:

This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.

Keywords: polyethylene, films, unformulated, FTIR, ageing

Procedia PDF Downloads 366
4984 The Effect of Meteorological Factors on the Trap Catches of Culicoides Species

Authors: Ahmed M. Rashed

Abstract:

Culicoides midges are known to be vectors of disease to both man and animals. For providing information necessary for control methods to be applied to the best advantage, a New jersey light-trap was used. Twenty species were identified during this study and eight species were recorded from Chantilly for the first time, these include C.grisescens, C.nubeculosus, C.cubitalis, C.achrayi, C.circumscriptus, C.stigma, C.reconditus, and C.parroti. The environmental factors, wind speed and temperature were found to have a marked effect on the activity of Culicoides midges. The temperature was found to be positively correlated and the wind speed negatively correlated with the light-trap catch. However, humidioty could not be shown to have any effect on the catch.

Keywords: culicoides, meteorological factors, wind speed, disease

Procedia PDF Downloads 451
4983 Genetic Structure Analysis through Pedigree Information in a Closed Herd of the New Zealand White Rabbits

Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi

Abstract:

The New Zealand White breed of rabbit is one of the most commonly used, well adapted exotic breeds in India. Earlier studies were limited only to analyze the environmental factors affecting the growth and reproductive performance. In the present study, the population of the New Zealand White rabbits in a closed herd was evaluated for its genetic structure. Data on pedigree information (n=2508) for 18 years (1995-2012) were utilized for the study. Pedigree analysis and the estimates of population genetic parameters based on gene origin probabilities were performed using the software program ENDOG (version 4.8). The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.489 years, 13.233 percent and 17.585 percent, respectively. The proportion of population inbred was 100 percent. The estimated mean values of average relatedness and the individual increase in inbreeding were 22.727 and 3.004 percent, respectively. The percent increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations, and complete generations, respectively. The number of ancestors contributing the most of 50% genes (fₐ₅₀) to the gene pool of reference population was 4 which might have led to the reduction in genetic variability and increased amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fₑ) and the effective number of ancestors (fₐ), as expressed by the fₑ/fₐ ratio was 1.1 which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29 percent pedigree was complete reflecting the well-maintained pedigree records. The maximum known generations were 15 with an average of 7.9 and the average equivalent generations traced were 5.6 indicating of a fairly good depth in pedigree. The realized effective population size was 14.93 which is very critical, and with the increasing trend of inbreeding, the situation has been assessed to be worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10 percent which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred with very high inbreeding coefficient and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve the genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.

Keywords: effective population size, genetic structure, pedigree analysis, rabbit genetics

Procedia PDF Downloads 292
4982 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 63
4981 Experimental Activity on the Photovoltaic Effect

Authors: Salomão Manuel Francisco, Manuel António Salgueiro Da Silva, Bento Filipe Barreiras Pinto Cavadas, Teresa Monteiro Seixas

Abstract:

In bachelor's degrees in Physics Education framework in Angola, and to a certain extent, within the community of Portuguese language countries (CPLP), teaching methodologies rely heavily on theoretical memorization and mathematical demonstrations. This approach often discourages students, particularly the female population, as the reliance on theoretical mathematical demonstrations generates the perception of Physics as an arduous, challenging discipline. To address this challenge and recognize the value of practical application as an evaluative criterion of material truth, we propose a practical activity in Environmental Physics that will be shared with Angolan higher education teachers, who will receive full scaffolding and support from the authors. These teachers, adopting and developing similar activities in a classroom setting, will contribute to the environmental education framework as well. Additionally, this work aligns with different goals of UNESCO's 2030 agenda, namely, specifically, goals 4, 5, 7, 11, 13, and 17. The experimental activity developed in this work is centered around the demonstration of the photovoltaic effect and its application for renewable energy production. The first objective of the activity is to study the variation of electrical power supplied by a photovoltaic system (PV) to an electrical circuit as the angle of light incidence changes. Students can observe that the power supplied to the circuit is greater when light rays fall perpendicularly on the PV. However, as the angle of incidence increases, resulting in a larger area covered by the light rays, the power supplied to the circuit decreases due to lower irradiance. The second objective is to demonstrate that the power output can be maximized by adjusting the circuit load resistance at each irradiance value. In these two parts of the activity, students can analyze experimental data taking into account the irradiance law and the equivalent circuit description of a PV cell. Through detailed data analysis, students are also expected to assess the effects of temperature on PV efficiency degradation and the efficiency enhancement provided by light concentration mechanisms. As a third objective, students can explore how the color of incident light affects the PV output power, considering the quantum nature of light and its interaction with the PV system.

Keywords: experiments, irradiation law, physic teaching, photovoltaic effect

Procedia PDF Downloads 82
4980 Research on the Optical Properties and Polymerization Environment of Broadband Reflective Films in the Visible Region

Authors: Z. Miao, Y. Chu, Y. Zhang

Abstract:

The unique cholesteric phase liquid crystals obtained by mixing nematic liquid crystals with chiral dopants have gained valuable applications in the display field for their selective reflection and circular dichroism properties. The periodic arrangement of the helical structure of cholesteric liquid crystals makes it possible to produce Bragg reflection of circularly polarized light irradiated perpendicularly to the liquid crystals and, therefore, to acquire semi- or fully reflective surfaces or films. If the polymer-liquid crystal composites are combined with polymeric monomers, commercialized reflective broadband films can be fabricated. In this study, the polymer-liquid crystal composites reflecting visible light region (wavelength centered at 550 nm) were studied to analyze the effects of AC electric field at different voltages and frequencies on the optical texture of the composites, as well as the effects of polymerization temperature and ultraviolet (UV) intensity on the polymerization reaction and reflection bandwidth. The optimal sample was finally obtained at 100Hz, 120V, 30℃, 1.00 mW/cm², which provides a research suggestion to solve the influencing factors of visible light reflection bandwidths.

Keywords: cholesteric liquid crystal, reflection bandwidths, negative dielectric anisotropy, planar texture

Procedia PDF Downloads 180
4979 Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System

Authors: Timiebi Aganaba-Jeanty

Abstract:

Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context.

Keywords: greenhouse gas emissions, reporting, monitoring and verification, satellite, UNFCCC

Procedia PDF Downloads 284
4978 Surface Modification of Poly High Internal Phase Emulsion by Solution Plasma Process for CO2 Adsorption

Authors: Mookyada Mankrut, Manit Nithitanakul

Abstract:

An increase in the amount of atmospheric carbon dioxide (CO2) resulting from anthropogenic CO2 emission has been a concerned problem so far. Adsorption using porous materials is feasible way to reduce the content of CO2 emission into the atmosphere due to several advantages: low energy consumption in regeneration process, low-cost raw materials and, high CO2 adsorption capacity. In this work, the porous poly(divinylbenzene) (poly(DVB)) support was synthesized under high internal phase emulsion (HIPE) polymerization then modified with polyethyleneimine (PEI) by using solution plasma process. These porous polymers were then used as adsorbents for CO2 adsorption study. All samples were characterized by some techniques: Fourier transform infrared spectroscopy (FT-IR), scanning electron spectroscopy (SEM), water contact angle measurement and, surface area analyzer. The results of FT-IR and a decrease in contact angle, pore volume and, surface area of PEI-loaded materials demonstrated that surface of poly(DVB) support was modified. In other words, amine groups were introduced to poly(DVB) surface. In addition, not only the outer surface of poly(DVB) adsorbent was modified, but also the inner structure as shown by FT-IR study. As a result, PEI-loaded materials exhibited higher adsorption capacity, comparing with those of the unmodified poly(DVB) support.

Keywords: polyHIPEs, CO2 adsorption, solution plasma process, high internal phase emulsion

Procedia PDF Downloads 272
4977 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters

Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang

Abstract:

Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.

Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology

Procedia PDF Downloads 67
4976 Aerodynamic Design of a Light Long Range Blended Wing Body Unmanned Vehicle

Authors: Halison da Silva Pereira, Ciro Sobrinho Campolina Martins, Vitor Mainenti Leal Lopes

Abstract:

Long range performance is a goal for aircraft configuration optimization. Blended Wing Body (BWB) is presented in many works of literature as the most aerodynamically efficient design for a fixed-wing aircraft. Because of its high weight to thrust ratio, BWB is the ideal configuration for many Unmanned Aerial Vehicle (UAV) missions on geomatics applications. In this work, a BWB aerodynamic design for typical light geomatics payload is presented. Aerodynamic non-dimensional coefficients are predicted using low Reynolds number computational techniques (3D Panel Method) and wing parameters like aspect ratio, taper ratio, wing twist and sweep are optimized for high cruise performance and flight quality. The methodology of this work is a summary of tailless aircraft wing design and its application, with appropriate computational schemes, to light UAV subjected to low Reynolds number flows leads to conclusions like the higher performance and flight quality of thicker airfoils in the airframe body and the benefits of using aerodynamic twist rather than just geometric.

Keywords: blended wing body, low Reynolds number, panel method, UAV

Procedia PDF Downloads 585