Search results for: support vector machines application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15621

Search results for: support vector machines application

14781 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support

Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi

Abstract:

The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.

Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools

Procedia PDF Downloads 121
14780 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 67
14779 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 92
14778 Applying Concurrent Development Process for the Web Using Aspect-Oriented Approach

Authors: Hiroaki Fukuda

Abstract:

This paper shows a concurrent development process for modern web application, called Rich Internet Application (RIA), and describes its effect using a non-trivial application development. In the last years, RIAs such as Ajax and Flex have become popular based mainly on high-speed network. RIA provides sophisticated interfaces and user experiences, therefore, the development of RIA requires two kinds of engineer: a developer who implements business logic, and a designer who designs interface and experiences. Although collaborative works are becoming important for the development of RIAs, shared resources such as source code make it difficult. For example, if a design of interface is modified after developers have finished business logic implementations, they need to repeat the same implementations, and also tests to verify application’s behavior. MVC architecture and Object-oriented programming (OOP) enables to dividing an application into modules such as interfaces and logic, however, developers and/or designers have to write pieces of code (e.g., event handlers) that make these modules work as an application. On the other hand, Aspect-oriented programming (AOP) is ex- pected to solve complexity of application software development nowadays. AOP provides methods to separate crosscutting concerns that are scattered pieces of code from primary concerns. In this paper, we provide a concurrent development process for RIAs by introducing AOP concept. This process makes it possible to reduce shared resources between developers and designers, therefore they can perform their tasks concurrently. In addition, we describe experiences of development for a practical application using our proposed development process to show its availability.

Keywords: aspect-oriented programming, concurrent, development process, rich internet application

Procedia PDF Downloads 300
14777 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 116
14776 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 397
14775 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices

Authors: Abdeghani Qadem

Abstract:

Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.

Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas

Procedia PDF Downloads 66
14774 Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine

Authors: Soran Tarkhani

Abstract:

A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs.

Keywords: Ukraine, Russia, Arabs, Ukrainians, Russians, Putin, invasion, Europe, war

Procedia PDF Downloads 74
14773 Conceptualizing Thoughtful Intelligence for Sustainable Decision Making

Authors: Musarrat Jabeen

Abstract:

Thoughtful intelligence offers a sustainable position to enhance the influence of decision-makers. Thoughtful Intelligence implies the understanding to realize the impact of one’s thoughts, words and actions on the survival, dignity and development of the individuals, groups and nations. Thoughtful intelligence has received minimal consideration in the area of Decision Support Systems, with an end goal to evaluate the quantity of knowledge and its viability. This pattern degraded the imbibed contribution of thoughtful intelligence required for sustainable decision making. Given the concern, this paper concentrates on the question: How to present a model of Thoughtful Decision Support System (TDSS)? The aim of this paper is to appreciate the concepts of thoughtful intelligence and insinuate a Decision Support System based on thoughtful intelligence. Thoughtful intelligence includes three dynamic competencies: i) Realization about long term impacts of decisions that are made in a specific time and space, ii) A great sense of taking actions, iii) Intense interconnectivity with people and nature and; seven associate competencies, of Righteousness, Purposefulness, Understanding, Contemplation, Sincerity, Mindfulness, and Nurturing. The study utilizes two methods: Focused group discussion to count prevailing Decision Support Systems; 70% results of focus group discussions found six decision support systems and the positive inexistence of thoughtful intelligence among decision support systems regarding sustainable decision making. Delphi focused on defining thoughtful intelligence to model (TDSS). 65% results helped to conceptualize (definition and description) of thoughtful intelligence. TDSS is offered here as an addition in the decision making literature. The clients are top leaders.

Keywords: thoughtful intelligence, sustainable decision making, thoughtful decision support system

Procedia PDF Downloads 134
14772 Virtual Reality Application for Neurorehabilitation

Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.

Keywords: virtual reality, interactive technologies, video games, neurorehabilitation

Procedia PDF Downloads 411
14771 Piezosurgery in Periodontics and Oral Implantology

Authors: Neelesh Papineni

Abstract:

Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.

Keywords: piezo-electric, osteotomy, osteoplasty, implantology

Procedia PDF Downloads 371
14770 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application

Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko

Abstract:

During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.

Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity

Procedia PDF Downloads 380
14769 Usability Evaluation of a Mobile Application to Enhance the Use of Smartphone, by Visually Impaired Users in Indonesia

Authors: Johanna Renny Octavia, Kamila Okta Saarah

Abstract:

Smartphone nowadays is widely used by many people all over the world. However, people with vision impairment may experience difficulties that interfere with the proper usage of the smartphone. In Indonesia, the population of visually impaired is about 13 million people (estimated 285 million people worldwide). There are a number of mobile applications developed to enhance the use of smartphone by visually impaired. This paper discusses the usability evaluation of a mobile application, namely Ray Vision, designed to help visually impaired in using smartphone. A series of usability testing with a number of Indonesian visually impaired revealed 28 usability problems in the mobile application that led to 14 design recommendations. The redesigned application was then re-evaluated through another usability testing series. The results showed that all five usability criteria assessed were increased (usefulness by 13%, effectiveness by 27%, efficiency by 27%, satisfaction by 23%, and learnability by 12%). The System Usability Score (SUS) was also increased by 14.92%.

Keywords: mobile application, smartphone, usability evaluation, vision impaired

Procedia PDF Downloads 311
14768 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)

Authors: Rizwan Fazal

Abstract:

This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.

Keywords: financial integration, trade integration, net foreign assets, gross domestic product

Procedia PDF Downloads 270
14767 Testing a Moderated Mediation Model of Person–Organization Fit, Organizational Support, and Feelings of Violation

Authors: Chi-Tai Shen

Abstract:

This study aims to examine whether perceived organizational support moderates the relationship between person–former organization fit and person–organization fit after the mediating effect of feelings of violation. A two-stage data collection method was used. Based on our research requirements, we only approached participants who were involuntary turnover from their former organizations and looking for a new job. Our final usable sample was comprised of a total of 264 participants from Taiwan. We followed Muller, Judd, and Yzerbyt, and Preacher, Rucker, and Hayes’s suggestions to test our moderated mediation model. This study found that employee perceived organizational support moderated the indirect effect of person–former organization fit on person–organization fit (through feelings of violation). Our study ends with a discussion of the main research findings and their limitations and presents suggestions regarding the direction of future studies and the empirical implications of the results.

Keywords: person–organization fit, feelings of violation, organizational support, moderated mediation

Procedia PDF Downloads 263
14766 Peer Support Groups as a Tool to Increase Chances of Passing General Practice UK Qualification Exams

Authors: Thomas Abraham, Garcia de la Vega Felipe, Lubna Nishath, Nzekwe Nduka, Powell Anne-Marie

Abstract:

Introduction: The purpose of this paper is to discuss the effectiveness of a peer support network created to provide medical education, pastoral support, and reliable resources to registrars to help them pass the MRCGP exams. This paper will include a description of the network and its purpose, discuss how it has been used by trainees since its creation, and explain how this methodology can be applied to other areas of medical education and primary care. Background: The peer support network was created in February 2021, using Facebook, Telegram, and WhatsApp platforms to facilitate discussion of cases and answer queries about the exams, share resources, and offer peer support from qualified GPs and specialists. The network was created and is maintained by the authors of this paper and is open to anyone who is registered with the General Medical Council (GMC) and is studying for the MRCGP exams. Purpose: The purpose of the network is to provide medical education, pastoral support, and reliable resources to registrars to help them pass the exams. The network is free to use and is designed to take the onus away from a single medical educator and collate a vast amount of information from multiple medical educators/trainers; thereby creating a digital library of information for all trainees - exam related or otherwise. Methodology The network is managed by a team of moderators who respond to queries and facilitate discussion. Smaller study groups are created from the main group and provide a platform for trainees to work together, share resources, and provide peer support. The network has had thousands of trainees using it since February 2021, with positive feedback from all trainees. Results: The feedback from trainees has been overwhelmingly positive. Word of mouth has spread rapidly, growing the groups exponentially. Trainees add colleagues to the groups and often stay after they pass their exams to 'give back' to their fellow trainees. To date, thousands of trainees have passed the MRCGP exams using the resources and support provided by the network. Conclusion The success of this peer support network demonstrates the effectiveness of creating a network of thousands of doctors to provide medical education and support.

Keywords: peer support, medical education, pastoral support, MRCGP exams

Procedia PDF Downloads 133
14765 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 64
14764 Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Authors: Waleed Maqableh, Ahmad Al-Hamad, Manjit Sidhu

Abstract:

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Keywords: augmented reality, multimedia, user interface, engineering, education technology

Procedia PDF Downloads 573
14763 Molecular Detection of Crimean-Congo Hemorrhagic Fever in Ticks of Golestan Province, Iran

Authors: Nariman Shahhosseini, Sadegh Chinikar

Abstract:

Introduction: Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe disease with fatality rates of 30%. The virus is transmitted to humans through the bite of an infected tick, direct contact with the products of infected livestock and nosocomially. The disease occurs sporadically throughout many of African, Asian, and European countries. Different species of ticks serve either as vector or reservoir for CCHFV. Materials and Methods: A molecular survey was conducted on hard ticks (Ixodidae) in Golestan province, north of Iran during 2014-2015. Samples were sent to National Reference Laboratory of Arboviruses (Pasteur Institute of Iran) and viral RNA was detected by RT-PCR. Results: Result revealed the presence of CCHFV in 5.3% of the selected ticks. The infected ticks belonged to Hy. dromedarii, Hy. anatolicum, Hy. marginatum, and Rh. sanguineus. Conclusions: These data demonstrates that Hyalomma ticks are the main vectors of CCHFV in Golestan province. Thus, preventive strategies such as using acaricides and repellents in order to avoid contact with Hyalomma ticks are proposed. Also, personal protective equipment (PPE) must be utilized at abattoirs.

Keywords: tick, CCHFV, surveillance, vector diversity

Procedia PDF Downloads 369
14762 Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

Authors: Ahmed Kamil Hasan Al-Ali, Bouchra Senadji, Ganesh Naik

Abstract:

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics of the speech signal. Channel effects are reduced using an intermediate vector (i-vector) and probabilistic linear discriminant analysis (PLDA) approach for classification. The proposed algorithm is evaluated by using an Australian forensic voice comparison database, combined with car, street and home noises from QUT-NOISE at a signal to noise ratio (SNR) ranging from -10 dB to 10 dB. Experimental results indicate that the MFCC feature warping-ICA achieves a reduction in equal error rate about (48.22%, 44.66%, and 50.07%) over using MFCC feature warping when the test speech signals are corrupted with random sessions of street, car, and home noises at -10 dB SNR.

Keywords: noisy forensic speaker verification, ICA algorithm, MFCC, MFCC feature warping

Procedia PDF Downloads 406
14761 Providing Emotional Support to Children under Long-Term Health Treatments

Authors: Ramón Cruzat, Sergio F. Ochoa, Ignacio Casas, Luis A. Guerrero, José Bravo

Abstract:

Patients under health treatments that involve long stays at a hospital or health centre (e.g. cancer, organ transplants and severe burns), tend to get bored or depressed because of the lack of social interaction with family and friends. Such a situation also affects the evolution and effectiveness of their treatments. In many cases, the solution to this problem involves extra challenges, since many patients need to rest quietly (or remain in bed) to their being contagious. Considering the weak health condition in which usually are these kinds, keeping them motivated and quiet represents an important challenge for nurses and caregivers. This article presents a mobile ubiquitous game called MagicRace, which allows hospitalized kinds to interact socially with one another without putting to risk their sensitive health conditions. The game does not require a communication infrastructure at the hospital, but instead, it uses a mobile ad hoc network composed of the handheld devices used by the kids to play. The usability and performance of this application was tested in two different sessions. The preliminary results show that users experienced positive feelings from this experience.

Keywords: ubiquitous game, children's emotional support, social isolation, mobile collaborative interactions

Procedia PDF Downloads 428
14760 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 102
14759 A Qualitative Study on Overcoming Problems and Limitations of Telepsychological Support (Online Counseling): Through Interviews with Practitioners

Authors: Toshiki Ito, Takahiro Yamane, Yuki Adachi, Yoshiko Kato, Eiji Tsuda, Kousaku Nagasaka, Keigo Yoshida, Yoshiko Kawasaki, Naoki Aizawa, Kyouhei Nishi, Tetsuko Kato

Abstract:

The epidemic of the coronavirus (COVID-19), first reported in Wuhan at the end of 2019, has drastically changed our daily lives. Under these circumstances, counseling, which provides psychological support to people, was also greatly affected. The structure of counseling, which had generally been implicitly common practice to be conducted in person, was greatly shaken. The author wondered how counseling can be conducted in situations where it is impossible to meet face-to-face. This is where telepsychological support (online counseling) came into use. The authors found that there were the following problems in telepsychological support: (1) anxiety about whether the communication is appropriate, (2) difficulty in understanding the client's situation and condition, (3) inability to perceive what was normally perceived in person, (4) difficulty in adjusting to severely ill clients, (5) difficulty in dealing with emergency situations, etc. In this study, we interviewed psychologists who had been accustomed to telepsychological support for more than two years after the Corona disaster began to clarify how they had or had not overcome the problems of telepsychological support identified in the above studies. We also aim to consider the unique possibilities of how telepsychological support, a new technique of psychological support, can be implemented to provide more effective and meaningful support in society after the end of the Corona disaster (post-Corona society). Thirteen psychologists who are currently providing telepsychological support in the Corona Disaster will be interviewed, and semi-structured interviews will be conducted for one hour per person. In order to empirically examine how the problems in telepsychological support had been overcome or not through the interview survey, the authors asked (1) how they overcame their anxiety about whether they were able to communicate appropriately, (2) how they devised ways to overcome it, (3) how they overcame the difficulty in adapting to heavy clients in terms of the level of the disease, (4) how they overcame the difficulty in dealing with emergency situations. The interviews were analyzed using Thematic Analysis, a qualitative analysis method commonly used in qualitative research overseas. The authors found that some devices and perspectives were newly discovered as a result of two years of practice of telepsychological support and that psychologists in this study considered face-to-face interviews and telepsychological support to be separate and were flexible enough to use them when available and to move to face-to-face interviews when not appropriate.

Keywords: telepsychology, COVID-19, Corona, psychologist

Procedia PDF Downloads 105
14758 The Current Application of BIM - An Empirical Study Focusing on the BIM-Maturity Level

Authors: Matthias Stange

Abstract:

Building Information Modelling (BIM) is one of the most promising methods in the building design process and plays an important role in the digitalization of the Architectural, Engineering, and Construction (AEC) Industry. The application of BIM is seen as the key enabler for increasing productivity in the construction industry. The model-based collaboration using the BIM method is intended to significantly reduce cost increases, schedule delays, and quality problems in the planning and construction of buildings. Numerous qualitative studies based on expert interviews support this theory and report perceived benefits from the use of BIM in terms of achieving project objectives related to cost, schedule, and quality. However, there is a large research gap in analysing quantitative data collected from real construction projects regarding the actual benefits of applying BIM based on representative sample size and different application regions as well as different project typologies. In particular, the influence of the project-related BIM maturity level is completely unexplored. This research project examines primary data from 105 construction projects worldwide using quantitative research methods. Projects from the areas of residential, commercial, and industrial construction as well as infrastructure and hydraulic engineering were examined in application regions North America, Australia, Europe, Asia, MENA region, and South America. First, a descriptive data analysis of 6 independent project variables (BIM maturity level, application region, project category, project type, project size, and BIM level) were carried out using statistical methods. With the help of statisticaldata analyses, the influence of the project-related BIM maturity level on 6 dependent project variables (deviation in planning time, deviation in construction time, number of planning collisions, frequency of rework, number of RFIand number of changes) was investigated. The study revealed that most of the benefits of using BIM perceived through numerous qualitative studies have not been confirmed. The results of the examined sample show that the application of BIM did not have an improving influence on the dependent project variables, especially regarding the quality of the planning itself and the adherence to the schedule targets. The quantitative research suggests the conclusion that the BIM planning method in its current application has not (yet) become a recognizable increase in productivity within the planning and construction process. The empirical findings indicate that this is due to the overall low level of BIM maturity in the projects of the examined sample. As a quintessence, the author suggests that the further implementation of BIM should primarily focus on an application-oriented and consistent development of the project-related BIM maturity level instead of implementing BIM for its own sake. Apparently, there are still significant difficulties in the interweaving of people, processes, and technology.

Keywords: AEC-process, building information modeling, BIM maturity level, project results, productivity of the construction industry

Procedia PDF Downloads 73
14757 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 168
14756 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 517
14755 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 94
14754 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 69
14753 Testing a Structural Model of SME Development in Mauritius and Botswana: The Role of Institutions in a Comparative Perspective

Authors: B. Seetanah, R. V. Sannassee, Lamport, K. Padachi, K. Seetah, S. Matadeen, N. Okurutt, N. Ama, L. Mokoodi

Abstract:

This paper analyses the impact of the various enabling elements towards fostering entrepreneurial behavior for two Sub Saharan African countries namely Mauritius and Botswana, with focus is on role of institutions (ministries, government support institutions, financing institutions and SME associations). Using a structural equation modeling framework, it is found that finance was some of the most determinant of respondents’ evaluation of the business climate thus emphasizing on the crucial of such an ingredient. Interestingly government related factors such as government support and institutional support are also reported to have a significant influence on the SME business climate in both countries.

Keywords: institutions, SME, SEM, Mauritius, Botswana

Procedia PDF Downloads 393
14752 Molecular Screening of Piroplasm from Ticks Collected from Sialkot, Gujranwala and Gujarat Districts of Punjab, Pakistan

Authors: Mahvish Maqbool, Muhmmad Sohail Sajid

Abstract:

Ticks (Acari: Ixodidae); bloodsucking parasites of domestic animals, have significant importance in the transmission of diseases and causing huge economic losses. This study aimed to screen endophilic ticks for the Piroplasms using polymerase chain reaction in three districts Sialkot, Gujranwala and Gujarat of Punjab, Pakistan. Ticks were dissected under a stereomicroscope, and internal organs (midguts& salivary glands) were procured to generate pools of optimum weights. DNA extraction was done through standard protocol followed by primer specific PCR for Piroplasma spp. A total of 22.95% tick pools were found positive for piroplasma spp. In districts, Sialkot and Gujranwala Piroplasma prevalence are higher in riverine animals while in Gujarat Prevalence is higher in non-riverine animals. Female animals were found more prone to piroplasma as compared to males. This study will provide useful data on the distribution of Piroplasma in the vector population of the study area and devise future recommendations for better management of ruminants to avoid subclinical and clinical infections and vector transmitted diseases.

Keywords: babesia, hyalomma, piroplasmposis, tick infectivity

Procedia PDF Downloads 174