Search results for: corrosion prediction ductile fracture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3534

Search results for: corrosion prediction ductile fracture

2694 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 464
2693 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber

Authors: Seyed Mohammad Asgharzadeh, Moein Biglari

Abstract:

Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.

Keywords: SAMI, sand asphalt, crumb rubber, indirect tensile test

Procedia PDF Downloads 228
2692 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 56
2691 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone

Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya

Abstract:

Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.

Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel

Procedia PDF Downloads 167
2690 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings

Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan

Abstract:

Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.

Keywords: corrosion test, hygrothermal cycling, coating test protocols, water ballast tanks

Procedia PDF Downloads 434
2689 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition

Authors: Karolina Mazur, Stanislaw Kuciel

Abstract:

Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.

Keywords: biocomposites, PLA, PHA, storage

Procedia PDF Downloads 265
2688 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray

Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry

Abstract:

Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.

Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion

Procedia PDF Downloads 94
2687 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
2686 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 488
2685 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
2684 Epidemiology and Risk Factors of Injury and Stress Fractures in Male and Female Runners

Authors: Balazs Patczai, Katalin Gocze, Gabriella Kiss, Dorottya Szabo, Tibor Mintal

Abstract:

Introduction: Running has become increasingly popular on a global scale in the past decades. Amateur athletes are taking their sport to a new level in an attempt to surpass their performance goals. The aim of our study was to assess the musculoskeletal condition of amateur runners and the prevalence of injuries with a special focus on stress fracture risk. Methods: The cross sectional analysis included ankle mobility, hamstring and lower back flexibility, the use of Renne’s test for iliotibial band syndrome, functional tests for trunk and rotary stability, and measurements of bone density. Data was collected at 2 major half-marathon events in Hungary. Results: Participants (n=134) mean age was 41.76±8.57 years (males: 40.67±8.83, females: 42.08±8.56). Measures of hamstring and lower back flexibility fell into the category of good for both genders (males: 7.13±6.83cm, females: 10.17±6.67cm). No side asymmetry nor gender differences were characteristic in the case of ankle mobility. Trunk stability was significantly better for males than in females (p=0.004). Markers of bone health were in the low normal range for females and were significantly better for males (T-score: p=0.003, T-ratio: p=0.014, Z-score: p=0.034, Z-ratio: p=0.011). 5.2% of females had a previous stress fracture and 24.1% experienced irregular menstrual cycles during the past year. As for the knowledge on the possible association of energy deficiency, menstrual disturbances and their effect on bone health, Only 8.6% of females have heard of the female athlete triad either during their studies or from a health professional. Discussion: The overall musculoskeletal state was satisfactory for both genders both physically and functionally. More attention and effort should be placed on primary and secondary prevention of amateur runners. Very few active women are well informed about the effects of low energy availability and menstrual dysfunction and the negative impact these have on bone health.

Keywords: bone health, flexibility, running, stress fracture

Procedia PDF Downloads 125
2683 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds

Authors: Hany M. Abd El-Lateef

Abstract:

Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.

Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques

Procedia PDF Downloads 392
2682 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
2681 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 368
2680 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 184
2679 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
2678 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 338
2677 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 140
2676 Prediction of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with 2(5H)-Furanones Using Recent Theoretical Reactivity Indices

Authors: Imad Eddine Charif, Wafaa Benchouk, Sidi Mohamed Mekelleche

Abstract:

The regioselectivity of a series of 16 1,3-dipolar cycloaddition reactions of nitrile oxides with 2(5H)-furanones has been analysed by means of global and local electrophilic and nucleophilic reactivity indices using density functional theory at the B3LYP level together with the 6-31G(d) basis set. The local electrophilicity and nucleophilicity indices, based on Fukui and Parr functions, have been calculated for the terminal sites, namely the C1 and O3 atoms of the 1,3-dipole and the C4 and C5 atoms of the dipolarophile. These local indices were calculated using both Mulliken and natural charges and spin densities. The results obtained show that the C5 atom of the 2(5H)-furanones is the most electrophilic site whereas the O3 atom of the nitrile oxides is the most nucleophilic centre. It turns out that the experimental regioselectivity is correctly reproduced, indicating that both Fukui- and Parr-based indices are efficient tools for the prediction of the regiochemistry of the studied reactions and could be used for the prediction of newly designed reactions of the same kind.

Keywords: 1, 3-dipolar cycloaddition, density functional theory, nitrile oxides, regioselectivity, reactivity indices

Procedia PDF Downloads 166
2675 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements

Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz

Abstract:

The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.

Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve

Procedia PDF Downloads 115
2674 Reliability Analysis for Cyclic Fatigue Life Prediction in Railroad Bolt Hole

Authors: Hasan Keshavarzian, Tayebeh Nesari

Abstract:

Bolted rail joint is one of the most vulnerable areas in railway track. A comprehensive approach was developed for studying the reliability of fatigue crack initiation of railroad bolt hole under random axle loads and random material properties. The operation condition was also considered as stochastic variables. In order to obtain the comprehensive probability model of fatigue crack initiation life prediction in railroad bolt hole, we used FEM, response surface method (RSM), and reliability analysis. Combined energy-density based and critical plane based fatigue concept is used for the fatigue crack prediction. The dynamic loads were calculated according to the axle load, speed, and track properties. The results show that axle load is most sensitive parameter compared to Poisson’s ratio in fatigue crack initiation life. Also, the reliability index decreases slowly due to high cycle fatigue regime in this area.

Keywords: rail-wheel tribology, rolling contact mechanic, finite element modeling, reliability analysis

Procedia PDF Downloads 381
2673 A Model of Foam Density Prediction for Expanded Perlite Composites

Authors: M. Arifuzzaman, H. S. Kim

Abstract:

Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15–0.5 g/cm3) produced with a range of compaction ratios (1.5-3.5), a range of sodium silicate contents (0.05–0.35 g/ml) in dilution, a range of expanded perlite particle sizes (1-4 mm), and various perlite densities (such as skeletal, material, bulk, and envelope densities). A close agreement between predictions and experimental results was found.

Keywords: expanded perlite, flotation method, foam density, model, prediction, sodium silicate

Procedia PDF Downloads 408
2672 Satellite Statistical Data Approach for Upwelling Identification and Prediction in South of East Java and Bali Sea

Authors: Hary Aprianto Wijaya Siahaan, Bayu Edo Pratama

Abstract:

Sea fishery's potential to become one of the nation's assets which very contributed to Indonesia's economy. This fishery potential not in spite of the availability of the chlorophyll in the territorial waters of Indonesia. The research was conducted using three methods, namely: statistics, comparative and analytical. The data used include MODIS sea temperature data imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, MODIS data of chlorophyll-a imaging results in Aqua satellite with a resolution of 4 km in 2002-2015, and Imaging results data ASCAT on MetOp and NOAA satellites with 27 km resolution in 2002-2015. The results of the processing of the data show that the incidence of upwelling in the south of East Java Sea began to happen in June identified with sea surface temperature anomaly below normal, the mass of the air that moves from the East to the West, and chlorophyll-a concentrations are high. In July the region upwelling events are increasingly expanding towards the West and reached its peak in August. Chlorophyll-a concentration prediction using multiple linear regression equations demonstrate excellent results to chlorophyll-a concentrations prediction in 2002 until 2015 with the correlation of predicted chlorophyll-a concentration indicate a value of 0.8 and 0.3 with RMSE value. On the chlorophyll-a concentration prediction in 2016 indicate good results despite a decline in the value of the correlation, where the correlation of predicted chlorophyll-a concentration in the year 2016 indicate a value 0.6, but showed improvement in RMSE values with 0.2.

Keywords: satellite, sea surface temperature, upwelling, wind stress

Procedia PDF Downloads 157
2671 Early Design Prediction of Submersible Maneuvers

Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano

Abstract:

This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.

Keywords: submarine maneuvers, submarine, maneuvering, dynamics

Procedia PDF Downloads 636
2670 Midface Trauma: Outpatient Follow-Up and Surgical Treatment Times

Authors: Divya Pathak, James Sloane

Abstract:

Surgical treatment of midface fractures should ideally occur within two weeks of injury, after which bony healing and consolidation make the repair more difficult for the operating surgeon. The oral and maxillofacial unit at the Royal Surrey Hospital is the tertiary referral center for maxillofacial trauma from five regional hospitals. This is a complete audit cycle of midface trauma referrals managed over a one year period. The standard set was that clinical assessment of the midface fracture would take place in a consultant led outpatient clinic within 7 days, and when indicated, surgical fixation would occur within 10 days of referral. Retrospective data was collected over one year (01/11/2018 - 31/12/2019). Three key changes were implemented: an IT referral mailbox, standardization of an on-call trauma table, and creation of a trauma theatre list. Re-audit was carried out over six months completing the cycle. 283 midface fracture referrals were received, of which 22 patients needed surgical fixation. The average time from referral to outpatient follow-up improved from 14.5 days to 8.3 days, and time from referral to surgery improved from 21.5 days to 11.6 days. Changes implemented in this audit significantly improved patient prioritization to appropriate outpatient clinics and shortened time to surgical intervention.

Keywords: maxillofacial trauma, midface trauma, oral and maxillofacial surgery, surgery fixation

Procedia PDF Downloads 143
2669 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 459
2668 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
2667 Prediction of the Mechanical Power in Wind Turbine Powered Car Using Velocity Analysis

Authors: Abdelrahman Alghazali, Youssef Kassem, Hüseyin Çamur, Ozan Erenay

Abstract:

Savonius is a drag type vertical axis wind turbine. Savonius wind turbines have a low cut-in speed and can operate at low wind speed. This makes it suitable for electricity or mechanical generation in low-power applications such as individual domestic installations. Therefore, the primary purpose of this work was to investigate the relationship between the type of Savonius rotor and the torque and mechanical power generated. And it was to illustrate how the type of rotor might play an important role in the prediction of mechanical power of wind turbine powered car. The main purpose of this paper is to predict and investigate the aerodynamic effects by means of velocity analysis on the performance of a wind turbine powered car by converting the wind energy into mechanical energy to overcome load that rotates the main shaft. The predicted results based on theoretical analysis were compared with experimental results obtained from literature. The percentage of error between the two was approximately around 20%. Prediction of the torque was done at a wind speed of 4 m/s, and an angular velocity of 130 RPM according to meteorological statistics in Northern Cyprus.

Keywords: mechanical power, torque, Savonius rotor, wind car

Procedia PDF Downloads 337
2666 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages

Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong

Abstract:

Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.

Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale

Procedia PDF Downloads 64
2665 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 78