Search results for: cells encapsulation
2524 Anti-Angiogenic Effects of the Macrovipera lebetina obtusa Snake Crude Venom and Obtustatin
Authors: Narine Ghazaryan, Joana Catarina Macedo, Sara Vaz, Naira Ayvazyan, Elsa Logarinho
Abstract:
Macrovipera lebetina obtusa (MLO) is a poisonous snake in Armenia. Obtustatin represents the shortest known monomeric disintegrin, isolated from the snake venom of MLO, and is known to specifically inhibit α1β1 integrin. Its oncostatic effect is due to the inhibition of angiogenesis, which likely arises from α1β1 integrin inhibition in the endothelial cells. To explore the therapeutic potential of the MLO snake venom and obtustatin, we studied activity of obtustatin and MLO venom in vitro, by testing their efficacy in human dermal microvascular endothelial cells (HMVEC-D) and in vivo, using chick embryo chorioallantoic membrane assay (CAM assay). Our in vitro results showed that obtustatin in comparison with MLO venom did not exhibit cytotoxic activity in HMVEC-D cells in comparison to MLO venom. But in vivo results have shown that 4µg /embryo (90 µM) of obtustatin inhibited angiogenesis induced by FGF2 by 17% while MLO snake venom induced 22% reduction of the angiogenic index. The concentration of obtustatin in the crude MLO venom was 0.3 nM, which is 300.000 times less than the concentration of the obtustatin itself. Given this enormous difference in concentration, it is likely that some components of the crude venom contribute to the observed anti-angiogenic effect. Hypotheses will be ascertained to justify this action: components in the MLO venom may increase obtustatin efficacy or have independent but synergic anti-angiogenic activities.Keywords: angiogenesis, alpa1 beta 1 integrin, Macrovipera lebetina obtusa, obtustatin
Procedia PDF Downloads 1962523 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 1172522 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells
Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin
Abstract:
Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology
Procedia PDF Downloads 3772521 Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns
Authors: Kevin Kellner, Nga Lao, Orla Coleman, Paula Meleady, Niall Barron
Abstract:
Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology.Keywords: Chinese Hamster ovary cells, CRISPR/Cas9, microRNAs, sponge decoy technology
Procedia PDF Downloads 1982520 Mannosylated Oral Amphotericin B Nanocrystals for Macrophage Targeting: In vitro and Cell Uptake Studies
Authors: Rudra Vaghela, P. K. Kulkarni
Abstract:
The aim of the present research was to develop oral Amphotericin B (AmB) nanocrystals (Nc) grafted with suitable ligand in order to enhance drug transport across the intestinal epithelial barrier and subsequently, active uptake by macrophages. AmB Nc were prepared by liquid anti-solvent precipitation technique (LAS). Poloxamer 188 was used to stabilize the prepared AmB Nc and grafted with mannose for actively targeting M cells in Peyer’s patches. To prevent shedding of the stabilizer and ligand, N,N’-Dicyclohexylcarbodiimide (DCC) was used as a cross-linker. The prepared AmB Nc were characterized for particle size, PDI, zeta potential, X-ray diffraction (XRD) and surface morphology using scanning electron microscope (SEM) and evaluated for drug content, in vitro drug release and cell uptake studies using caco-2 cells. The particle size of stabilized AmB Nc grafted with WGA was in the range of 287-417 nm with negative zeta potential between -18 to -25 mV. XRD studies revealed crystalline nature of AmB Nc. SEM studies revealed that ungrafted AmB Nc were irregular in shape with rough surface whereas, grafted AmB Nc were found to be rod-shaped with smooth surface. In vitro drug release of AmB Nc was found to be 86% at the end of one hour. Cellular studies revealed higher invasion and uptake of AmB Nc towards caco-2 cell membrane when compared to ungrafted AmB Nc. Our findings emphasize scope on developing oral delivery system for passively targeting M cells in Peyer’s patches.Keywords: leishmaniasis, amphotericin b nanocrystals, macrophage targeting, LAS technique
Procedia PDF Downloads 3012519 Asymptomatic Intercostal Schwannoma in a Patient with COVID-19: The First of Its Kind
Authors: Gabriel Hunduma
Abstract:
Asymptomatic intra-thoracic neurogenic tumours are rare. Tumours arising from the intercostal nerves of the chest wall are exceedingly rare. This paper reports an incidental discovery of a neurogenic intercostal tumour while being investigated for Coronavirus Disease 2019 (COVID-19). A 54-year-old female underwent a thoracotomy and resection for an intercostal tumour. Pre-operative images showed an intrathoracic mass, and the biopsy revealed a schwannoma. The most common presenting symptom recorded in literature is chest pain; however, our case remained asymptomatic despite the size of the mass and thoracic area it occupied. After an extensive search of the literature, COVID-19 was found to have an influence on the development of certain cells in breast cancer. Hence there is a possibility that COVID-19 played a role in progressing the development of the schwannoma cells.Keywords: thoracic surgery, intercostal schwannoma, chest wall oncology, COVID-19
Procedia PDF Downloads 2142518 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films
Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul
Abstract:
Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films
Procedia PDF Downloads 3532517 Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin
Authors: Arpa Petchsomrit, Namfa Sermkaew, Ruedeekorn Wiwattanapatapee
Abstract:
Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs.Keywords: alginate, curcumin, floating drug delivery, oil entrapped bead
Procedia PDF Downloads 3852516 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats
Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia
Abstract:
Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells
Procedia PDF Downloads 3022515 Twist2 Is a Key Regulator of Cell Proliferation in Acute Lymphoblastic Leukaemia
Authors: Magdalena Rusady Goey, Gordon Strathdee, Neil Perkins
Abstract:
Background: Acute lymphoblastic leukaemia (ALL) is the most frequent type of childhood malignancy, accounting for 25% of all cases. TWIST2, a basic helix-loop-helix transcription factor, has been implicated in ALL development. Prior studies found that TWIST2 undergoes epigenetic silencing in more than 50% cases of ALL through promoter hypermethylation and suggested that re-expression of TWIST2 may inhibit cell growth/survival of leukaemia cell lines. TWIST2 has also been implicated as a regulator of NF-kappaB activity, which is constitutively active in leukaemia. Here, we use a lentiviral transductions system to confirm the importance of TWIST2 in controlling leukaemia cell growth and to investigate whether this is achieved through altered regulation of NF-kappaB activity. Method: Re-expression of TWIST2 in leukaemia cell lines was achieved using lentiviral-based transduction. The lentiviral vector also expresses enhanced green fluorescent protein (eGFP), allowing transduced cells to be tracked using flow cytometry. Analysis of apoptosis and cell proliferation were done using annexinV and VPD450 staining, respectively. Result and Discussion: TWIST2-expressing cells were rapidly depleted from a mixed population in ALL cell lines (NALM6 and Reh), indicating that TWIST2 inhibited cell growth/survival of ALL cells. In contrast, myeloid cell lines (HL60 and K562) were comparatively insensitive to TWIST2 re-expression. Analysis of apoptosis and cell proliferation found no significant induction of apoptosis, but did find a rapid induction of proliferation arrest in TWIST2-expressing Reh and NALM6 cells. Initial experiment with NF-kappaB inhibitor demonstrated that inhibition of NF-kappaB has similar impact on cell proliferation in the ALL cell lines, suggesting that TWITST2 may induce cell proliferation arrest through inhibition of NF-kappaB. Conclusion: The results of this study suggest that epigenetic inactivation of TWIST2 in primary ALL leads to increased proliferation, potentially by altering the regulation of NF-kappaB.Keywords: leukaemia, acute lymphoblastic leukaemia, NF-kappaB, TWIST2, lentivirus
Procedia PDF Downloads 3462514 Comparison of Cardiomyogenic Potential of Amniotic Fluid Mesenchymal Stromal Cells Derived from Normal and Isolated Congenital Heart Defective Fetuses
Authors: Manali Jain, Neeta Singh, Raunaq Fatima, Soniya Nityanand, Mandakini Pradhan, Chandra Prakash Chaturvedi
Abstract:
Isolated Congenital Heart Defect (ICHD) is the major cause of neonatal death worldwide among all forms of CHDs. A significant proportion of fetuses with ICHD die in the neonatal period if no treatment is provided. Recently, stem cell therapies have emerged as a potential approach to ameliorate ICHD in children. ICHD is characterized by cardiac structural abnormalities during embryogenesis due to alterations in the cardiomyogenic properties of a pool of cardiac progenitors/ stem cells associated with fetal heart development. The stem cells present in the amniotic fluid (AF) are of fetal origin and may reflect the physiological and pathological changes in the fetus during embryogenesis. Therefore, in the present study, the cardiomyogenic potential of AF-MSCs derived from fetuses with ICHD (ICHD AF-MSCs) has been evaluated and compared with that of AF-MSCs of structurally normal fetuses (normal AF-MSCs). Normal and ICHD AF-MSC were analyzed for the expression of cardiac progenitor markers viz., stage-specific embryonic antigen-1 (SSEA-1), vascular endothelial growth factor 2 (VEGFR-2) and platelet-derived growth factor receptor-alpha (PDGFR-α) by flow cytometry. The immunophenotypic characterization revealed that ICHD AF-MSCs have significantly lower expression of cardiac progenitor markers VEGFR-2 (0.14% ± 0.6 vs.48.80% ± 0.9; p <0.01), SSEA-1 (70.86% ± 2.4 vs. 88.36% ±2.7; p <0.01), and PDGFR-α (3.92% ± 1.8 vs. 47.59% ± 3.09; p <0.01) in comparison to normal AF-MSCs. Upon induction with 5’-azacytidine for 21 days, ICHD AF-MSCs showed a significantly down-regulated expression of cardiac transcription factors such as GATA-4 (0.4 ± 0.1 vs. 6.8 ± 1.2; p<0.01), ISL-1 (2.3± 0.6 vs. 14.3 ± 1.12; p<0.01), NK-x 2-5 (1.1 ± 0.3 vs. 14.1 ±2.8; p<0.01), TBX-5 (0.4 ± 0.07 vs. 4.4 ± 0.3; p<0.001), and TBX-18 (1.3 ± 0.2 vs. 4.19 ± 0.3; p<0.01) when compared with the normal AF-MSCs. Furthermore, immunocytochemical staining revealed that both types of AF-MSCs could differentiate into cardiovascular lineages and express cardiomyogenic, endothelial, and smooth muscle actin markers, viz., cardiac troponin (cTNT), CD31, and alpha-smooth muscle actin (α-SMA). However, normal AF-MSCs showed an enhanced expression of cTNT (p<0.001), CD31 (p<0.01), and α-SMA (p<0.05), compared to ICHD AF-MSCs. Overall, these results suggest that the ICHD-AF-MSCs have a defective cardiomyogenic differentiation potential and that the defects in these stem cells may have a role in the pathogenesis of ICHD.Keywords: amniotic fluid, cardiomyogenic potential, isolated congenital heart defect, mesenchymal stem cells
Procedia PDF Downloads 1022513 Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway
Authors: Jessica A. Soto-Bear, Virginia González-Vélez, Norma Castañeda-Villa, Amparo Gil
Abstract:
Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity.Keywords: inner hair cells, Monte Carlo algorithm, Otoferlin, secretion
Procedia PDF Downloads 2212512 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro
Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni
Abstract:
Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.Keywords: apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest
Procedia PDF Downloads 3542511 Investigation of Graphene-MoS₂ Nanocomposite as Counter Electrode in Dye-Sensitized Solar Cells
Authors: Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Mehdi Ghahari
Abstract:
Dye-sensitized solar cells are sustainable tool for generating electrical energy using sunlight. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Herein, we employed a MoS₂/graphene composite instead of platinum in the DSSCs. Platinum is an efficient and conventional counter electrode in the preparation of DSSCs, for this purpose, the effect of the presence of platinum electrode was also studied under similar conditions. The prepared nanocomposite product was checked by analysis methods to confirm the correctness of the construction and the desired structure. Finally, the DSSCs were fabricated using MoS₂/graphene composite, and to compare the results, the DSSCs were also prepared using platinum. The results showed that the prepared composite has a similar performance compared to platinum and can replace it.Keywords: efficiency, dye-sensitized solar cell, nano-composite MoS₂, platinum free
Procedia PDF Downloads 642510 New Roles of Telomerase and Telomere-Associated Proteins in the Regulation of Telomere Length
Authors: Qin Yang, Fan Zhang, Juan Du, Chongkui Sun, Krishna Kota, Yun-Ling Zheng
Abstract:
Telomeres are specialized structures at chromosome ends consisting of tandem repetitive DNA sequences [(TTAGGG)n in humans] and associated proteins, which are necessary for telomere function. Telomere lengths are tightly regulated within a narrow range in normal human somatic cells, the basis of cellular senescence and aging. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in telomere maintenance through elongating the short telomeres. However, the molecular mechanisms of regulating excessively long telomeres are unknown. Here, we found that telomerase enzymatic component hTERT plays a dual role in the regulation of telomeres length. We analyzed single telomere alterations at each chromosomal end led to the discoveries that hTERT shortens excessively long telomeres and elongates short telomeres simultaneously, thus maintaining the optimal telomere length at each chromosomal end for an efficient protection. The hTERT-mediated telomere shortening removes large segments of telomere DNA rapidly without inducing telomere dysfunction foci or affecting cell proliferation, thus it is mechanistically distinct from rapid telomere deletion. We found that expression of hTERT generates telomeric circular DNA, suggesting that telomere homologous recombination may be involved in this telomere shortening process. Moreover, the hTERT-mediated telomere shortening is required its enzymatic activity, but telomerase RNA component hTR is not involved in it. Furthermore, shelterin protein TPP1 interacts with hTERT and recruits it on telomeres to mediate telomere shortening. In addition, telomere-associated proteins, DKC1 and TCAB1 also play roles in this process. This novel hTERT-mediated telomere shortening mechanism not only exists in cancer cells, but also in primary human cells. Thus, the hTERT-mediated telomere shortening is expected to shift the paradigm on current molecular models of telomere length maintenance, with wide-reaching consequences in cancer and aging fields.Keywords: aging, hTERT, telomerase, telomeres, human cells
Procedia PDF Downloads 4272509 Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins
Authors: L. Le Priol, A. Nesterenko, K. El Kirat, K. Saleh
Abstract:
Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.Keywords: biopolymer, edible oil, microencapsulation, oxidative stability, release, spray-drying
Procedia PDF Downloads 1372508 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay
Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza
Abstract:
The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.
Procedia PDF Downloads 5082507 Ramification of Pemphigus Vulgaris Sera and the Monoclonal Antibody Against Desmoglein-3 on Nrf2 Expression in Keratinocyte Cultures
Authors: Faris Mohsin Alabeedi
Abstract:
Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by the presence of autoantibodies directed against the epidermis's surface proteins. There are two forms of PV, mucocutaneous and mucosal-dominant PV. Disruption of the cell junctions is a hallmark of PV due to the autoantibodies targeting the desmosomal cadherins, desmoglein-3 (Dsg3) and desmoglein-1, leading to acantholysis in the skin and mucous membrane. Although the pathogenesis of PV is known, the detailed molecular events remain not fully understood. Our recent study has shown that both the PV sera and pathogenic anti-Dsg3 antibody AK23 can induce ROS and cause oxidative stress in cultured keratinocytes. In line with our finding, other independent studies also demonstrate oxidative stress in PV. Since Nrf2 plays a crucial role in cellular anti-oxidative stress response, we hypothesize that the expression of Nrf2 may alter in PV. Thus, treatment of cells with PV sera or AK23 may cause changes in Nrf2 expression and distribution. The purpose of this study was to examine the effect of AK23 and PV sera on Nrf2 in a normal human keratinocyte cell line, such as NTERT cells. Both a time-course and dose-dependent experiments with AK23, alongside the matched isotype control IgG, were performed in keratinocyte cultures and analysed by immunofluorescence for Nrf2 and Dsg3. Additionally, the same approach was conducted with the sera from PV patients and healthy individuals that served as a control in this study. All the fluorescent images were analysed using ImageJ software. Each experiment was repeated twice. In general, variations were observed throughout this study. In the dose-response experiments, although enhanced Dsg3 expression was consistently detected in AK23 treated cells, the expression of Nrf2 showed no consistent findings between the experiments, although changes in its expression were noticeable in cells treated with AK23. In the time-course study, a trend with induction of Nrf2 over time was shown in control cells treated with mouse isotype IgG. Treatment with AK23 showed a reduction of Nrf2 in a time-dependent manner, especially at the 24-hour time point. However, the earlier time points, such as 2 hours and 6 hours with AK23 treatments, detected somewhat variations. Finally, PV sera caused a decrease of Dsg3, but on the other hand, variations were observed in Nrf2 expression in PV sera treated cells. In general, PV sera seemed to cause a reduction of Nrf2 in the majority of PV sera treated samples. In addition, more pronounced cytoplasmic expression of Nrf2 has been observed in PV sera treated cells than those treated with AK23, suggesting that polyclonal and monoclonal IgG might induce a different effect on Nrf2 expression and distribution. Further experimental studies are crucial to obtain a more coincide global view of Nrf2-mediated gene regulation. In particular, Pemphigus Voulgaris studies assessing how the Nrf2-dependent network changes from a physiological to a pathological condition can provide insight into disease mechanisms and perhaps initiate further treatment approaches.Keywords: pemphigus vulgaris, monoclonal antibody against desmoglein-3, Nrf2 oxidative stress, keratinocyte cultures
Procedia PDF Downloads 752506 New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization
Authors: Nagi Greesh
Abstract:
This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives.Keywords: polymer-wax, paraffin wax, miniemulsion, core/shell, nanocomposites
Procedia PDF Downloads 912505 Optical Simulation of HfO₂ Film - Black Silicon Structures for Solar Cells Applications
Authors: Gagik Ayvazyan, Levon Hakhoyan, Surik Khudaverdyan, Laura Lakhoyan
Abstract:
Black Si (b-Si) is a nano-structured Si surface formed by a self-organized, maskless process with needle-like surfaces discernible by their black color. The combination of low reflectivity and the semi-conductive properties of Si found in b-Si make it a prime candidate for application in solar cells as an antireflection surface. However, surface recombination losses significantly reduce the efficiency of b-Si solar cells. Surface passivation using suitable dielectric films can minimize these losses. Nowadays some works have demonstrated that excellent passivation of b-Si nanostructures can be reached using Al₂O₃ films. However, the negative fixed charge present in Al₂O₃ films should provide good field effect passivation only for p- and p+-type Si surfaces. HfO2 thin films have not been practically tested for passivation of b-Si. HfO₂ could provide an alternative for n- and n+- type Si surface passivation since it has been shown to exhibit positive fixed charge. Using optical simulation by Finite-Difference Time Domain (FDTD) method, the possibility of b-Si passivation by HfO2 films has been analyzed. The FDTD modeling revealed that b-Si layers with HfO₂ films effectively suppress reflection in the wavelength range 400–1000 nm and across a wide range of incidence angles. The light-trapping performance primarily depends on geometry of the needles and film thickness. With the decrease of periodicity and increase of height of the needles, the reflectance decrease significantly, and the absorption increases significantly. Increase in thickness results in an even greater decrease in the calculated reflection coefficient of model structures and, consequently, to an improvement in the antireflection characteristics in the visible range. The excellent surface passivation and low reflectance results prove the potential of using the combination of the b-Si surface and the HfO₂ film for solar cells applications.Keywords: antireflection, black silicon, HfO₂, passivation, simulation, solar cell
Procedia PDF Downloads 1462504 Decreased Tricarboxylic Acid (TCA) Cycle Staphylococcus aureus Increases Survival to Innate Immunity
Authors: Trenten Theis, Trevor Daubert, Kennedy Kluthe, Austin Nuxoll
Abstract:
Staphylococcus aureus is a gram-positive bacterium responsible for an estimated 23,000 deaths in the United States and 25,000 deaths in the European Union annually. Recurring S. aureus bacteremia is associated with biofilm-mediated infections and can occur in 5 - 20% of cases, even with the use of antibiotics. Despite these infections being caused by drug-susceptible pathogens, they are surprisingly difficult to eradicate. One potential explanation for this is the presence of persister cells—a dormant type of cell that shows a high tolerance to antibiotic treatment. Recent studies have shown a connection between low intracellular ATP and persister cell formation. Specifically, this decrease in ATP, and therefore increase in persister cell formation, is due to an interrupted tricarboxylic acid (TCA) cycle. However, S. aureus persister cells’ role in pathogenesis remains unclear. Initial studies have shown that a fumC (TCA cycle gene) knockout survives challenge from aspects of the innate immune system better than wild-type S. aureus. Specifically, challenges from two antimicrobial peptides--LL-37 and hBD-3—show a log increase in survival of the fumC::N∑ strain compared to wild type S. aureus after 18 hours. Furthermore, preliminary studies show that the fumC knockout has a log more survival within a macrophage. These data lead us to hypothesize that the fumC knockout is better suited to other aspects of the innate immune system compared to wild-type S. aureus. To further investigate the mechanism for increased survival of fumC::N∑ within a macrophage, we tested bacterial growth in the presence of reactive oxygen species (ROS), reactive nitrogen species (RNS), and a low pH. Preliminary results suggest that the fumC knockout has increased growth compared to wild-type S. aureus in the presence of all three antimicrobial factors; however, no difference was observed in any single factor alone. To investigate survival within a host, a nine-day biofilm-associated catheter infection was performed on 6–8-week-old male and female C57Bl/6 mice. Although both sexes struggled to clear the infection, female mice were trending toward more frequently clearing the HG003 wild-type infection compared to the fumC::N∑ infection. One possible reason for the inability to reduce the bacterial burden is that biofilms are largely composed of persister cells. To test this hypothesis further, flow cytometry in conjunction with a persister cell marker was used to measure persister cells within a biofilm. Cap5A (a known persister cell marker) expression was found to be increased in a maturing biofilm, with the lowest levels of expression seen in immature biofilms and the highest expression exhibited by the 48-hour biofilm. Additionally, bacterial cells in a biofilm state closely resemble persister cells and exhibit reduced membrane potential compared to cells in planktonic culture, further suggesting biofilms are largely made up of persister cells. These data may provide an explanation as to why infections caused by antibiotic-susceptible strains remain difficult to treat.Keywords: antibiotic tolerance, Staphylococcus aureus, host-pathogen interactions, microbial pathogenesis
Procedia PDF Downloads 1802503 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro
Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic
Abstract:
As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis
Procedia PDF Downloads 2042502 Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy
Authors: Prabhavathi Sundaram, Heidi Abrahamse
Abstract:
In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer.Keywords: colon cancer, hyaluronic acid, single walled carbon nanotubes, photosensitizers, photodynamic therapy
Procedia PDF Downloads 1162501 Multidrug Therapies For HIV: Hybrid On-Off, Hysteresis On-Off Control and Simple STI
Authors: Magno Enrique Mendoza Meza
Abstract:
This paper deals with the comparison of three control techniques: the hysteresis on-off control (HyOOC), the hybrid on-off control (HOOC) and the simple Structured Treatment Interruptions (sSTI). These techniques are applied to the mathematical model developed by Kirschner and Webb. To compare these techniques we use a cost functional that minimize the wild-type virus population and the mutant virus population, but the main objective is to minimize the systemic cost of treatment and maximize levels of healthy CD4+ T cells. HyOOC, HOOC, and sSTI are applied to the drug therapies using a reverse transcriptase and protease inhibitors; simulations show that these controls maintain the uninfected cells in a small, bounded neighborhood of a pre-specified level. The controller HyOOC and HOOC are designed by appropriate choice of virtual equilibrium points.Keywords: virus dynamics, on-off control, hysteresis, multi-drug therapies
Procedia PDF Downloads 3942500 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 882499 Ultrastructural Changes Occur in Mice Lungs After Cessation to Exposure of Incense Smoke
Authors: Samar Rabah
Abstract:
Background: Incense woods are special kind of trees called Agarwood, which characterized by good smelling odors and many medical benefits. Incense smoke is heavily used in Saudi Arabia although comprehensive studies of its effects on health are limited. The present study demonstrated lung ultrastructure changes of mice after exposure and cessation to Incense smoke. Eighty mice are divided equally into four groups, three groups are exposed to different concentrations of Incense smoke (2, 4 and 6 gm) for three months, while the fourth group is control one. At the end of each month, lungs of five animals from each group are gathered, while the last five animals from each group are kept for another 60 days without exposure to the Incense smoke to allow for recovery. Results: Transmission electron microscope investigations of all exposed groups showed hypertrophy and hyperplasia in Clara Cells and some an enlargement of the macrophage to the point that it fills a large part of the alveolar lumen. Scanning electron microscope marks presence of mucus materials attached to the epithelial bronchioles. After prevention of exposure to the Incense smoke for 60 days, necrosis and degeneration in some cells of epithelial bronchioles, fibrosis of peribronchial, thickening in alveolar walls and aggregation of lymphoid cells were demonstrated. Conclusion: Based on the above findings and other related studies (not published), we conclude that exposure to Incense smoke causes harmful effects due to sever changes in pulmonary ultrastructure, such effects do not disappear even when Incense smoke inhalation was stopped. Therefore, we recommend that Incense smoke should use only in open places to reduce its harms.Keywords: Incense smoke, lungs, ultrastructure of lungs, Agarwood
Procedia PDF Downloads 4132498 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers
Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi
Abstract:
We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.Keywords: aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride
Procedia PDF Downloads 4502497 Rosuvastatin Improves Endothelial Progenitor Cells in Rheumatoid Arthritis
Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan
Abstract:
Background: Endothelial Progenitor Cells (EPCs) are depleted and contribute to increased cardiovascular (CV) risk in rheumatoid arthritis (RA). Statins exert a protective effect in CAD partly by promoting EPC mobilization. This vasculoprotective effect of statin has not yet been investigated in RA. We aimed to investigate the effect of rosuvastatin on EPCs in RA. Methods: 50 RA patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=25) and placebo (n=25) as an adjunct to existing stable antirheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures included DAS28, CRP and ESR were measured at baseline and after treatment. Lipids and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) were estimated at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. At baseline, EPCs inversely correlated with DAS28 and TNF-α in both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin but did not show significant change with placebo. Rosuvastatin exerted positive effect on lipid spectrum: lowering total cholesterol, LDL, non HDL and elevation of HDL as compared with placebo. At 6 months, DAS28, ESR, CRP, TNF-α and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and DAS28, CRP, TNF-α, and IL-6 after treatment with rosuvastatin. Conclusion: First study to show that rosuvastatin improves inflammation and EPC biology in RA possibly through its anti-inflammatory and lipid lowering effect. This beneficial effect of rosuvastatin may provide a novel strategy to prevent cardiovascular events in RA.Keywords: RA, Endothelial Progenitor Cells, rosuvastatin, cytokines
Procedia PDF Downloads 2582496 Studying the Effect of Silicon Substrate Intrinsic Carrier Concentration on Performance of ZnO/Si Solar Cells
Authors: Syed Sadique Anwer Askari, Mukul Kumar Das
Abstract:
Zinc Oxide (ZnO) solar cells have drawn great attention due to the enhanced efficiency and low-cost fabrication process. In this study, ZnO thin film is used as the active layer, hole blocking layer, antireflection coating (ARC) as well as transparent conductive oxide. To improve the conductivity of ZnO, top layer of ZnO is doped with aluminum, for top contact. Intrinsic carrier concentration of silicon substrate plays an important role in enhancing the power conversion efficiency (PCE) of ZnO/Si solar cell. With the increase of intrinsic carrier concentration PCE decreased due to increase in dark current in solar cell. At 80nm ZnO and 160µm Silicon substrate thickness, power conversion efficiency of 26.45% and 21.64% is achieved with intrinsic carrier concentration of 1x109/cm3, 1.4x1010/cm3 respectively.Keywords: hetero-junction solar cell, solar cell, substrate intrinsic carrier concentration, ZnO/Si
Procedia PDF Downloads 6012495 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 112