Search results for: automatic impedance matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1829

Search results for: automatic impedance matching

989 Classifying Blog Texts Based on the Psycholinguistic Features of the Texts

Authors: Hyung Jun Ahn

Abstract:

With the growing importance of social media, it is imperative to analyze it to understand the users. Users share useful information and their experience through social media, where much of what is shared is in the form of texts. This study focused on blogs and aimed to test whether the psycho-linguistic characteristics of blog texts vary with the subject or the type of experience of the texts. For this goal, blog texts about four different types of experience, Go, skiing, reading, and musical were collected through the search API of the Tistory blog service. The analysis of the texts showed that various psycholinguistic characteristics of the texts are different across the four categories of the texts. Moreover, the machine learning experiment using the characteristics for automatic text classification showed significant performance. Specifically, the ensemble method, based on functional tree and bagging appeared to be most effective in classification.

Keywords: blog, social media, text analysis, psycholinguistics

Procedia PDF Downloads 282
988 Development of a Psychometric Testing Instrument Using Algorithms and Combinatorics to Yield Coupled Parameters and Multiple Geometric Arrays in Large Information Grids

Authors: Laith F. Gulli, Nicole M. Mallory

Abstract:

The undertaking to develop a psychometric instrument is monumental. Understanding the relationship between variables and events is important in structural and exploratory design of psychometric instruments. Considering this, we describe a method used to group, pair and combine multiple Philosophical Assumption statements that assisted in development of a 13 item psychometric screening instrument. We abbreviated our Philosophical Assumptions (PA)s and added parameters, which were then condensed and mathematically modeled in a specific process. This model produced clusters of combinatorics which was utilized in design and development for 1) information retrieval and categorization 2) item development and 3) estimation of interactions among variables and likelihood of events. The psychometric screening instrument measured Knowledge, Assessment (education) and Beliefs (KAB) of New Addictions Research (NAR), which we called KABNAR. We obtained an overall internal consistency for the seven Likert belief items as measured by Cronbach’s α of .81 in the final study of 40 Clinicians, calculated by SPSS 14.0.1 for Windows. We constructed the instrument to begin with demographic items (degree/addictions certifications) for identification of target populations that practiced within Outpatient Substance Abuse Counseling (OSAC) settings. We then devised education items, beliefs items (seven items) and a modifiable “barrier from learning” item that consisted of six “choose any” choices. We also conceptualized a close relationship between identifying various degrees and certifications held by Outpatient Substance Abuse Therapists (OSAT) (the demographics domain) and all aspects of their education related to EB-NAR (past and present education and desired future training). We placed a descriptive (PA)1tx in both demographic and education domains to trace relationships of therapist education within these two domains. The two perceptions domains B1/b1 and B2/b2 represented different but interrelated perceptions from the therapist perspective. The belief items measured therapist perceptions concerning EB-NAR and therapist perceptions using EB-NAR during the beginning of outpatient addictions counseling. The (PA)s were written in simple words and descriptively accurate and concise. We then devised a list of parameters and appropriately matched them to each PA and devised descriptive parametric (PA)s in a domain categorized information grid. Descriptive parametric (PA)s were reduced to simple mathematical symbols. This made it easy to utilize parametric (PA)s into algorithms, combinatorics and clusters to develop larger information grids. By using matching combinatorics we took paired demographic and education domains with a subscript of 1 and matched them to the column with each B domain with subscript 1. Our algorithmic matching formed larger information grids with organized clusters in columns and rows. We repeated the process using different demographic, education and belief domains and devised multiple information grids with different parametric clusters and geometric arrays. We found benefit combining clusters by different geometric arrays, which enabled us to trace parametric variables and concepts. We were able to understand potential differences between dependent and independent variables and trace relationships of maximum likelihoods.

Keywords: psychometric, parametric, domains, grids, therapists

Procedia PDF Downloads 282
987 Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method

Authors: Ce Liu, Wei Huo

Abstract:

A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results.

Keywords: quadrotor, trajectory tracking control, controlled lagrangians, underactuated system

Procedia PDF Downloads 125
986 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 438
985 Similarity of the Disposition of the Electrostatic Potential of Tetrazole and Carboxylic Group to Investigate Their Bioisosteric Relationship

Authors: Alya A. Arabi

Abstract:

Bioisosteres are functional groups that can be interchangeably used without affecting the potency of the drug. Bioisosteres have similar pharmacological properties. Bioisosterism is useful for modifying the physicochemical properties of a drug while obeying the Lipinski’s rules. Bioisosteres are key in optimizing the pharmacokinetic and pharmacodynamics properties of a drug. Tetrazole and carboxylate anions are non-classic bioisosteres. Density functional theory was used to obtain the wavefunction of the molecules and the optimized geometries. The quantum theory of atoms in molecules (QTAIM) was used to uncover the similarity of the average electron density in tetrazole and carboxylate anions. This similarity between the bioisosteres capped by a methyl group was valid despite the fact that the groups have different volumes, charges, energies, or electron populations. The biochemical correspondence of tetrazole and carboxylic acid was also determined to be a result of the similarity of the topography of the electrostatic potential (ESP). The ESP demonstrates the pharmacological and biochemical resemblance for a matching “key-and-lock” interaction.

Keywords: bioisosteres, carboxylic acid, density functional theory, electrostatic potential, tetrazole

Procedia PDF Downloads 442
984 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 170
983 Industrial Relations as Communication: The Strange Case of the FCA-UAW Agreement

Authors: Francesco Nespoli

Abstract:

After having posed a theoretical framework combining framing theory and new rhetoric, the paper analyze the shift in communication both adopted by UAW and FCA during the negotiations in fall 2015. The paper argues that mistakes and adjustments played a determinant role respectively in the rejection of the first tentative agreement and in the ratification of the contract. The purpose of the paper is to set a new theoretical framework for the analysis of communication in industrial relations, by describing a narrative construction of reality from the perspective of the new rhetoric. The paper thus analyze all public text, speeches, tweets and Facebook posts by the union reading them as part of the narrative set by the organization condensed by the slogan 'it’s our time'. That narrative tried to gain consensus from the members matching the expectations due to the industry recovery after more than five years of workers' sacrifices. In doing so, the analysis points out a shift in the communication strategy of the union after the first rejection of a tentative agreement in 15 years. The findings suggest that, from the communication point of view, consultation in industrial relations can be conceived as a particular kind of political communication where identification with the audience through deliberate narrative may not be effective if it is not preceded by a listening campaign.

Keywords: communication, consultation, automotive, FCA

Procedia PDF Downloads 192
982 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 142
981 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 100
980 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 61
979 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.

Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate

Procedia PDF Downloads 501
978 Designing an Automatic Mechanical System to Prevent Cancers Caused by Drinks

Authors: Ghasem Yazadani, Hamidreza Ahmadi, Masoud Ahmadi, Sajad Rezazadeh

Abstract:

In this paper with designing and proposing a compound of a heating and cooling system has been tried to show effect of this system on preventing esophagus cancer that can be caused by hot and cold drinks such as tea, coffee and ice water. This system has been simulated mechanically by fluent software and also has been validated by experimental way and a comprehensive result has been presented. Both of solution ways show that this system can reduce or increase temperature of drink to safe very dramatically and it can be a huge step toward consuming drinks safely and also it can be efficient about time issues. The system consists of a temperature sensor and an electronic controller that has a computer program to act automatically this task. Also this system has been presented after many different simulations and has been tried to find the best one in the point view of velocity of heating and cooling.

Keywords: fluent, heat transfer, controller, esophagus cancer

Procedia PDF Downloads 389
977 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 451
976 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 449
975 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 154
974 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 256
973 The Impact of Social Protection Intervention on Alleviating Social Vulnerability (Evidence from Ethiopian Rural Households)

Authors: Tewelde Gebresslase Haile, S. P. Singh

Abstract:

To bridge the existing knowledge gap on public intervention implementations, this study estimates the impact of social protection intervention (SPI) on alleviating social vulnerability. Following a multi-stage sampling, primary information was gathered through a self-administered questionnaire, FGD, and interviews from the target households located at four systematically selected districts of Tigrai, Ethiopia. Factor analysis and Propensity Score Matching are applied to construct Social Vulnerability Index (SVI) and measuring the counterfactual impact of selected intervention. As a multidimensional challenge, social vulnerability is found as an important concept used to guide policy evaluation. Accessibility of basic services of Social Affairs, Agriculture, Health and Education sectors, and Food Security Program are commonly used as SPIs. Finally, this study discovers that the households who had access to SPI have scored 9.65% lower SVI than in the absence of the intervention. Finally, this study suggests the provision of integrated, proactive, productive, and evidence-based SPIs to alleviate social vulnerability.

Keywords: social protection, livelihood assets, social vulnerability, public policy SVI

Procedia PDF Downloads 95
972 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier

Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral

Abstract:

With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.

Keywords: audio classification, audio extraction, environment mobile, musical information retrieval

Procedia PDF Downloads 548
971 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.

Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river

Procedia PDF Downloads 508
970 Design and Construction of Vehicle Tracking System with Global Positioning System/Global System for Mobile Communication Technology

Authors: Bala Adamu Malami

Abstract:

The necessity of low-cost electronic vehicle/car security designed in coordination with other security measures is always there in our society to reduce the risk of vehicle intrusion. Keeping this problem in mind, we are designing an automatic GPS system which is technology to build an integrated and fully customized vehicle to detect the movement of the vehicle and also serve as a security system at a reasonable cost. Users can locate the vehicle's position via GPS by using the Google Maps application to show vehicle coordinates on a smartphone. The tracking system uses a Global System for Mobile Communication (GSM) modem for communication between the mobile station and the microcontroller to send and receive commands. Further design can be improved to capture the vehicle movement range and alert the vehicle owner when the vehicle is out of range.

Keywords: electronic, GPS, GSM modem, communication, vehicle

Procedia PDF Downloads 105
969 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: compressive strength, coupling effect, statistical analysis, ultrasonic

Procedia PDF Downloads 325
968 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 435
967 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 19
966 The Development of Supported Employment in Malaysia

Authors: Chu Shi Wei

Abstract:

Supported employment in Malaysia is in the early stages of development. The development of supported employment in Malaysia is an important step towards the inclusion of individuals with disabilities who have previously lacked the necessary support for employment in the open labour market as they were confined to sheltered workshops. There is a paradigm shift from sheltered to supported employment as the sheltered workshop is based on the medical model of disability, which focuses on the disability of the individual and segregated training institutions. The paradigm shift revolves around the social model of disability, which emphasizes the abilities of the individual and the removal of the barriers in the environment by the provision of support. This study explores the development of supported employment by utilizing a mixed methods approach which consists of collecting quantitative data through a survey and interviewing participants to collect qualitative data. Job coaches from six employment sectors participated in the survey and interview. The findings of the study indicate that the role of job coaches is integral to the development of supported employment. The role of job coaches includes job matching, on-the-job training, and developing natural supports to foster greater diversity and inclusion in the workplace.

Keywords: supported employment, disabilities, diversity, development

Procedia PDF Downloads 74
965 Subsurface Elastic Properties Determination for Site Characterization Using Seismic Refraction Tomography at the Pwalugu Dam Area

Authors: Van-Dycke Sarpong Asare, Vincent Adongo

Abstract:

Field measurement of subsurface seismic p-wave velocities was undertaken through seismic refraction tomography. The aim of this work is to obtain a model of the shallow subsurface material elastic properties relevant for geotechnical site characterization. The survey area is at Pwalugu in Northern Ghana, where a multipurpose dam, for electricity generation, irrigation, and potable water delivery, is being planned. A 24-channel seismograph and 24, 10 Hz electromagnetic geophones, deployed 5 m apart constituted the acquisition hardware. Eleven (2-D) seismic refraction profiles, nine of which ran almost perpendicular and two parallel to the White Volta at Pwalugu, were acquired. The refraction tomograms of the thirteen profiles revealed a subsurface model consisting of one minor and one major acoustic impedance boundaries – the top dry/loose sand and the variably weathered sandstone contact, and the overburden-sandstones bedrock contact respectively. The p-wave velocities and by inference, with a priori values of poison ratios, the s-wave velocities, assisted in characterizing the geotechnical conditions of the proposed site and also in evaluating the dynamic properties such as the maximum shear modulus, the bulk modulus, and the Young modulus.

Keywords: tomography, characterization, consolidated, Pwalugu and seismograph

Procedia PDF Downloads 133
964 Pathological Gambling and Impulsivity: Comparison of the Eight Laboratory Measures of Inhibition Capacities

Authors: Semion Kertzman, Pinhas Dannon

Abstract:

Impulsive behaviour and the underlying brain processes are hypothesized to be central in the development and maintenance of pathological gambling. Inhibition ability can be differentially impaired in pathological gamblers (PGs). Aims: This study aimed to compare the ability of eight widely used inhibition measures to discriminate between PGs and healthy controls (HCs). Methods: PGs (N=51) and demographically matched HCs (N=51) performed cognitive inhibition (the Stroop), motor inhibition (the Go/NoGo) and reflective inhibition (the Matching Familiar Figures (MFFT)) tasks. Results: An augmented total interference response time in the Stroop task (η² =0.054), a large number of commission errors (η² =0.053) in the Go/NoGo task, and the total number of errors in the MFFT (η² =0.05) can discriminate PGs from HCs. Other measures are unable to differentiate between PGs and HCs. No significant correlations were observed between inhibition measures. Conclusion: Inhibition measures varied in the ability to discriminate PGs from HCs. Most inhibition measures were not relevant to gambling behaviour. PGs do not express rash, impulsive behaviour, such as quickly choosing an answer without thinking. In contrast, in PGs, inhibition impairment was related to slow-inaccurate performance.

Keywords: pathological gambling, impulsivity, neurocognition, addiction

Procedia PDF Downloads 304
963 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 206
962 Automatic Slider Design in Injection Moldings

Authors: Alan C. Lin, Tran Anh Son

Abstract:

This study proposes an approach to determine the undercut regions and their releasing directions for slider design of complex parts represented by the file format of STL (STereoLithography). In order to delineate the border of undercut regions, orthogonal cutting planes are firstly employed to automatically find the inner loops of a part model. To discover the facets belonging to undercut regions, attributes are then assigned to the facets of the part model based on the topological relationship of adjacent facets of each inner loop. After that, the undercut regions are separated from other facets in the model. Through the recognized facets of the undercut regions, the concept of 'visibility map (V-map)' is further applied to determine feasible releasing directions for each of the undercut regions. The undercut regions having the same releasing direction are finally grouped to form a slider in the injection mold.

Keywords: solid model, STL data, injection mold design, visibility map

Procedia PDF Downloads 397
961 Biometric Recognition Techniques: A Survey

Authors: Shabir Ahmad Sofi, Shubham Aggarwal, Sanyam Singhal, Roohie Naaz

Abstract:

Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented.

Keywords: biometric, DNA, fingerprint, ear, face, retina scan, gait, iris, voice recognition, unimodal biometric, multimodal biometric

Procedia PDF Downloads 760
960 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 158