Search results for: Ni Zhang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1003

Search results for: Ni Zhang

163 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 367
162 The Mediating Role of Social Connectivity in the Effect of Positive Personality and Alexithymia on Life Satisfaction: Analysis Based on Structural Equation Model

Authors: Yulin Zhang, Kaixi Dong, Guozhen Zhao

Abstract:

Background: Different levels of life satisfaction are associated with some individual differences. Understanding the mechanism between them will help to enhance an individual’s well-being. On the one hand, traditional personality such as extraversion has been considered as the most stable and effective factor in predicting life satisfaction to the author’s best knowledge. On the other, individual emotional difference, such as alexithymia (difficulties identifying and describing one’s own feelings), is also closely related to life satisfaction. With the development of positive psychology, positive personalities such as virtues attract wide attention. And according to the broaden-and-build theory, social connectivity may mediate between emotion and life satisfaction. Therefore, the current study aims to explore the mediating role of social connectivity in the effect of positive personality and alexithymia on life satisfaction. Method: This study was conducted with 318 healthy Chinese college students whose age range from 18 to 30. Positive personality (including interpersonal, vitality, and cautiousness) was measured by the Chinese version of Values in Action Inventory of Strengths (VIA-IS). Alexithymia was measured by the Toronto Alexithymia Scale (TAS), and life satisfaction was measured by Satisfaction With Life Scale (SWLS). And social connectivity was measured by six items which have been used in previous studies. Each scale showed high reliability and validity. The mediating model was examined in Mplus 7.2 within a structural equation modeling (SEM) framework. Findings: The model fitted well and results revealed that both positive personality (95% confidence interval of indirect effect was [0.023, 0.097]) and alexithymia (95% confidence interval of indirect effect was [-0.270, -0.089]) predicted life satisfaction level significantly through social connectivity. Also, only positive personality significantly and directly predicted life satisfaction compared to alexithymia (95% confidence interval of direct effect was [0.109, 0.260]). Conclusion: Alexithymia predicts life satisfaction only through social connectivity, which emphasizes the importance of social bonding in enhancing the well-being of Chinese college students with alexithymia. And the positive personality can predict life satisfaction directly or through social connectivity, which provides implications for enhancing the well-being of Chinese college students by cultivating their virtue and positive psychological quality.

Keywords: alexithymia, life satisfaction, positive personality, social connectivity

Procedia PDF Downloads 168
161 Identification of Candidate Congenital Heart Defects Biomarkers by Applying a Random Forest Approach on DNA Methylation Data

Authors: Kan Yu, Khui Hung Lee, Eben Afrifa-Yamoah, Jing Guo, Katrina Harrison, Jack Goldblatt, Nicholas Pachter, Jitian Xiao, Guicheng Brad Zhang

Abstract:

Background and Significance of the Study: Congenital Heart Defects (CHDs) are the most common malformation at birth and one of the leading causes of infant death. Although the exact etiology remains a significant challenge, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of congenital heart defects. At present, no existing DNA methylation biomarkers are used for early detection of CHDs. The existing CHD diagnostic techniques are time-consuming and costly and can only be used to diagnose CHDs after an infant was born. The present study employed a machine learning technique to analyse genome-wide methylation data in children with and without CHDs with the aim to find methylation biomarkers for CHDs. Methods: The Illumina Human Methylation EPIC BeadChip was used to screen the genome‐wide DNA methylation profiles of 24 infants diagnosed with congenital heart defects and 24 healthy infants without congenital heart defects. Primary pre-processing was conducted by using RnBeads and limma packages. The methylation levels of top 600 genes with the lowest p-value were selected and further investigated by using a random forest approach. ROC curves were used to analyse the sensitivity and specificity of each biomarker in both training and test sample sets. The functionalities of selected genes with high sensitivity and specificity were then assessed in molecular processes. Major Findings of the Study: Three genes (MIR663, FGF3, and FAM64A) were identified from both training and validating data by random forests with an average sensitivity and specificity of 85% and 95%. GO analyses for the top 600 genes showed that these putative differentially methylated genes were primarily associated with regulation of lipid metabolic process, protein-containing complex localization, and Notch signalling pathway. The present findings highlight that aberrant DNA methylation may play a significant role in the pathogenesis of congenital heart defects.

Keywords: biomarker, congenital heart defects, DNA methylation, random forest

Procedia PDF Downloads 159
160 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth

Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao

Abstract:

The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.

Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth

Procedia PDF Downloads 81
159 A Significant Clinical Role for the Capitalbio™ DNA Microarray in the Diagnosis of Multidrug-Resistant Tuberculosis in Patients with Tuberculous Spondylitis Simultaneous with Pulmonary Tuberculosis in High Prevalence Settings in China

Authors: Wenjie Wu, Peng Cheng, Zehua Zhang, Fei Luo, Feng Wu, Min Zhong, Jianzhong Xu

Abstract:

Background: There has been limited research into the therapeutic efficacy of rapid diagnosis of spinal tuberculosis complicated with pulmonary tuberculosis. We attempted to discover whether the utilization of a DNA microarray assay to detect multidrug-resistant spinal tuberculosis complicated with pulmonary tuberculosis can improve clinical outcomes. Methods: A prospective study was conducted from February 2006 to September 2015. One hundred and forty-three consecutive culture–confirmed, clinically and imaging diagnosed MDR-TB patients with spinal tuberculosis complicated by pulmonary tuberculosis were enrolled into the study. The initial time to treatment for MDR-TB, the method of infection control, radiological indicators of spinal tubercular infectious foci, culture conversion, and adverse drug reactions were compared with the standard culture methods. Results: Of the total of 143 MDR-TB patients, 68 (47.6%) were diagnosed by conventional culture methods and 75 (52.4%) following the implementation of detection using the DNA microarray. Patients in the microarray group began rational use of the second-line drugs schedule more speedily than sufferers in the culture group (17.3 vs. 74.1 days). Among patients were admitted to a general tuberculosis ward, those from the microarray group spent less time in the ward than those from the culture group (7.8 vs. 49.2 days). In those patients with six months follow-up (n=134), patients in the microarray group had a higher rate of sputum negativity conversion at six months (89% vs. 73%). In the microarray group, the rate of drug adverse reactions was significantly lower (22.2% vs. 67.7%). At the same time, they had a more obvious reduction of the area with spinal tuberculous lesions in radiological examinations (77% vs. 108%). Conclusions: The application of the CapitalBio™ DNA Microarray assay caused noteworthy clinical advances including an earlier time to begin MDR-TB treatment, increased sputum culture conversion, improved infection control measures and better radiographical results

Keywords: tuberculosis, multidrug-resistant, tuberculous spondylitis, DNA microarray, clinical outcomes

Procedia PDF Downloads 289
158 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 140
157 Reading Strategy Instruction in Secondary Schools in China

Authors: Leijun Zhang

Abstract:

Reading literacy has become a powerful tool for academic success and an essential goal of education. The ability to read is not only fundamental for pupils’ academic success but also a prerequisite for successful participation in today’s vastly expanding multi-literate textual environment. It is also important to recognize that, in many educational settings, students are expected to learn a foreign/second language for successful participation in the increasingly globalized world. Therefore, it is crucial to help learners become skilled foreign-language readers. Research indicates that students’ reading comprehension can be significantly improved through explicit instruction of multiple reading strategies. Despite the wealth of research on how to enhance learners’ reading comprehension achievement by identifying an enormous range of reading strategies and techniques for assisting students in comprehending specific texts, relatively scattered studies have centered on whether these reading comprehension strategies and techniques are used in classrooms, especially in Chinese academic settings. Given the central role of ‘the teacher’ in reading instruction, the study investigates the degree of importance that EFL teachers attach to reading comprehension strategies and their classroom employment of those strategies in secondary schools in China. It also explores the efficiency of reading strategy instruction on pupils’ reading comprehension performance. As a mix-method study, the analysis drew on data from a quantitative survey and interviews with seven teachers. The study revealed that the EFL teachers had positive attitudes toward the use of cognitive strategies despite their insufficient knowledge about and limited attention to the metacognitive strategies and supporting strategies. Regarding the selection of reading strategies for instruction, the mandated curriculum and high-stakes examinations, text features and demands, teaching preparation programs and their own EFL reading experiences were the major criteria in their responses, while few teachers took into account the learner needs in their choice of reading strategies. Although many teachers agreed upon the efficiency of reading strategy instruction in developing students’ reading comprehension competence, three challenges were identified in their implementation of the strategy instruction. The study provides some insights into reading strategy instruction in EFL contexts and proposes implications for curriculum innovation, teacher professional development, and reading instruction research.

Keywords: reading comprehension strategies, EFL reading instruction, language teacher cognition, teacher education

Procedia PDF Downloads 90
156 A Furniture Industry Concept for a Sustainable Generative Design Platform Employing Robot Based Additive Manufacturing

Authors: Andrew Fox, Tao Zhang, Yuanhong Zhao, Qingping Yang

Abstract:

The furniture manufacturing industry has been slow in general to adopt the latest manufacturing technologies, historically relying heavily upon specialised conventional machinery. This approach not only requires high levels of specialist process knowledge, training, and capital investment but also suffers from significant subtractive manufacturing waste and high logistics costs due to the requirement for centralised manufacturing, with high levels of furniture product not re-cycled or re-used. This paper aims to address the problems by introducing suitable digital manufacturing technologies to create step changes in furniture manufacturing design, as the traditional design practices have been reported as building in 80% of environmental impact. In this paper, a 3D printing robot for furniture manufacturing is reported. The 3D printing robot mainly comprises a KUKA industrial robot, an Arduino microprocessor, and a self-assembled screw fed extruder. Compared to traditional 3D printer, the 3D printing robot has larger motion range and can be easily upgraded to enlarge the maximum size of the printed object. Generative design is also investigated in this paper, aiming to establish a combined design methodology that allows assessment of goals, constraints, materials, and manufacturing processes simultaneously. ‘Matrixing’ for part amalgamation and product performance optimisation is enabled. The generative design goals of integrated waste reduction increased manufacturing efficiency, optimised product performance, and reduced environmental impact institute a truly lean and innovative future design methodology. In addition, there is massive future potential to leverage Single Minute Exchange of Die (SMED) theory through generative design post-processing of geometry for robot manufacture, resulting in ‘mass customised’ furniture with virtually no setup requirements. These generatively designed products can be manufactured using the robot based additive manufacturing. Essentially, the 3D printing robot is already functional; some initial goals have been achieved and are also presented in this paper.

Keywords: additive manufacturing, generative design, robot, sustainability

Procedia PDF Downloads 133
155 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 60
154 A Differential Detection Method for Chip-Scale Spin-Exchange Relaxation Free Atomic Magnetometer

Authors: Yi Zhang, Yuan Tian, Jiehua Chen, Sihong Gu

Abstract:

Chip-scale spin-exchange relaxation free (SERF) atomic magnetometer makes use of millimeter-scale vapor cells micro-fabricated by Micro-electromechanical Systems (MEMS) technique and SERF mechanism, resulting in the characteristics of high spatial resolution and high sensitivity. It is useful for biomagnetic imaging including magnetoencephalography and magnetocardiography. In a prevailing scheme, circularly polarized on-resonance laser beam is adapted for both pumping and probing the atomic polarization. And the magnetic-field-sensitive signal is extracted by transmission laser intensity enhancement as a result of atomic polarization increase on zero field level crossing resonance. The scheme is very suitable for integration, however, the laser amplitude modulation (AM) noise and laser frequency modulation to amplitude modulation (FM-AM) noise is superimposed on the photon shot noise reducing the signal to noise ratio (SNR). To suppress AM and FM-AM noise the paper puts forward a novel scheme which adopts circularly polarized on-resonance light pumping and linearly polarized frequency-detuning laser probing. The transmission beam is divided into transmission and reflection beams by a polarization analyzer, the angle between the analyzer's transmission polarization axis and frequency-detuning laser polarization direction is set to 45°. The magnetic-field-sensitive signal is extracted by polarization rotation enhancement of frequency-detuning laser which induces two beams intensity difference increase as the atomic polarization increases. Therefore, AM and FM-AM noise in two beams are common-mode and can be almost entirely canceled by differential detection. We have carried out an experiment to study our scheme. The experiment reveals that the noise in the differential signal is obviously smaller than that in each beam. The scheme is promising to be applied for developing more sensitive chip-scale magnetometer.

Keywords: atomic magnetometer, chip scale, differential detection, spin-exchange relaxation free

Procedia PDF Downloads 171
153 Dynamic Analysis and Clutch Adaptive Prefill in Dual Clutch Transmission

Authors: Bin Zhou, Tongli Lu, Jianwu Zhang, Hongtao Hao

Abstract:

Dual clutch transmissions (DCT) offer a high comfort performance in terms of the gearshift. Hydraulic multi-disk clutches are the key components of DCT, its engagement determines the shifting comfort. The prefill of the clutches requests an initial engagement which the clutches just contact against each other but not transmit substantial torque from the engine, this initial clutch engagement point is called the touch point. Open-loop control is typically implemented for the clutch prefill, a lot of uncertainties, such as oil temperature and clutch wear, significantly affects the prefill, probably resulting in an inappropriate touch point. Underfill causes the engine flaring in gearshift while overfill arises clutch tying up, both deteriorating the shifting comfort of DCT. Therefore, it is important to enable an adaptive capacity for the clutch prefills regarding the uncertainties. In this paper, a dynamic model of the hydraulic actuator system is presented, including the variable force solenoid and clutch piston, and validated by a test. Subsequently, the open-loop clutch prefill is simulated based on the proposed model. Two control parameters of the prefill, fast fill time and stable fill pressure is analyzed with regard to the impact on the prefill. The former has great effects on the pressure transients, the latter directly influences the touch point. Finally, an adaptive method is proposed for the clutch prefill during gear shifting, in which clutch fill control parameters are adjusted adaptively and continually. The adaptive strategy is changing the stable fill pressure according to the current clutch slip during a gearshift, improving the next prefill process. The stable fill pressure is increased by means of the clutch slip while underfill and decreased with a constant value for overfill. The entire strategy is designed in the Simulink/Stateflow, and implemented in the transmission control unit with optimization. Road vehicle test results have shown the strategy realized its adaptive capability and proven it improves the shifting comfort.

Keywords: clutch prefill, clutch slip, dual clutch transmission, touch point, variable force solenoid

Procedia PDF Downloads 308
152 Inverse Saturable Absorption in Non-linear Amplifying Loop Mirror Mode-Locked Fiber Laser

Authors: Haobin Zheng, Xiang Zhang, Yong Shen, Hongxin Zou

Abstract:

The research focuses on mode-locked fiber lasers with a non-linear amplifying loop mirror (NALM). Although these lasers have shown potential, they still have limitations in terms of low repetition rate. The self-starting of mode-locking in NALM is influenced by the cross-phase modulation (XPM) effect, which has not been thoroughly studied. The aim of this study is two-fold. First, to overcome the difficulties associated with increasing the repetition rate in mode-locked fiber lasers with NALM. Second, to analyze the influence of XPM on self-starting of mode-locking. The power distributions of two counterpropagating beams in the NALM and the differential non-linear phase shift (NPS) accumulations are calculated. The analysis is conducted from the perspective of NPS accumulation. The differential NPSs for continuous wave (CW) light and pulses in the fiber loop are compared to understand the inverse saturable absorption (ISA) mechanism during pulse formation in NALM. The study reveals a difference in differential NPSs between CW light and pulses in the fiber loop in NALM. This difference leads to an ISA mechanism, which has not been extensively studied in artificial saturable absorbers. The ISA in NALM provides an explanation for experimentally observed phenomena, such as active mode-locking initiation through tapping the fiber or fine-tuning light polarization. These findings have important implications for optimizing the design of NALM and reducing the self-starting threshold of high-repetition-rate mode-locked fiber lasers. This study contributes to the theoretical understanding of NALM mode-locked fiber lasers by exploring the ISA mechanism and its impact on self-starting of mode-locking. The research fills a gap in the existing knowledge regarding the XPM effect in NALM and its role in pulse formation. This study provides insights into the ISA mechanism in NALM mode-locked fiber lasers and its role in selfstarting of mode-locking. The findings contribute to the optimization of NALM design and the reduction of self-starting threshold, which are essential for achieving high-repetition-rate operation in fiber lasers. Further research in this area can lead to advancements in the field of mode-locked fiber lasers with NALM.

Keywords: inverse saturable absorption, NALM, mode-locking, non-linear phase shift

Procedia PDF Downloads 101
151 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 127
150 Physiological Responses of Dominant Grassland Species to Different Grazing Intensity in Inner Mongolia, China

Authors: Min Liu, Jirui Gong, Qinpu Luo, Lili Yang, Bo Yang, Zihe Zhang, Yan Pan, Zhanwei Zhai

Abstract:

Grazing disturbance is one of the important land-use types that affect plant growth and ecosystem processes. In order to study the responses of dominant species to grazing in the semiarid temperate grassland of Inner Mongolia, we set five grazing intensity plots: a control and four levels of grazing (light (LG), moderate (MG), heavy (HG) and extreme heavy grazing (EHG)) to test the morphological and physiological responses of Stipa grandis, Leymus chinensis at the individual levels. With the increase of grazing intensity, Stipa grandis and Leymus chinensis both exhibited reduced plant height, leaf area, stem length and aboveground biomass, showing a significant dwarf phenomenon especially in HG and EHG plots. The photosynthetic capacity decreased along the grazing gradient. Especially in the MG plot, the two dominant species have lowest net photosynthetic rate (Pn) and water use efficiency (WUE). However, in the HG and EHG plots, the two species had high light saturation point (LSP) and low light compensation point (LCP), indicating they have high light-use efficiency. They showed a stimulation of compensatory photosynthesis to the remnant leaves as compared with grasses in MG plot. For Leymus chinensis, the lipid peroxidation level did not increase with the low malondialdehyde (MDA) content even in the EHG plot. It may be due to the high enzymes activity of superoxide dismutase (SOD) and peroxidase (POD) to reduce the damage of reactive oxygen species. Meanwhile, more carbohydrate was stored in the leaf of Leymus chinensis to provide energy to the plant regrowth. On the contrary, Stipa grandis showed the high level of lipid peroxidation especially in the HG and EHG plots with decreased antioxidant enzymes activity. The soluble protein content did not change significantly in the different plots. Therefore, with the increase of grazing intensity, plants changed morphological and physiological traits to defend themselves effectively to herbivores. Leymus chinensis is more resistant to grazing than Stipa grandis in terms of tolerance traits, particularly under heavy grazing pressure.

Keywords: antioxidant enzymes activity, grazing density, morphological responses, photosynthesis

Procedia PDF Downloads 367
149 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 318
148 BSYJ Promoting Homing and Differentiation of Mesenchymal Stem Cells at the Retina of Age-Related Macular Degeneration Model Mice Induced by Sodium Iodate

Authors: Lina Liang, Kai Xu, Jing Zhang

Abstract:

Purpose: Age-related macular degeneration (AMD) is a major leading cause of visual impairment and blindness with no cure currently established. Cell replacement is discussed as a potential therapy for AMD. Besides intravitreal injection and subretinal injection, intravenous administration has been explored as an alternative route. This study is to observe the effect of BSYJ, a traditional Chinese medicine on the homing and differentiation of mesenchymal stem cells transplanted via tail vein injection in an age-related macular degeneration mouse model. Methods: Four-week-old C57BL/6J mice were injected with 40 mg/kg NaIO₃ to induce age-related macular degeneration model. At the second day after NaIO₃ injection, 1×10⁷ GFP labeled bone marrow-derived mesenchymal stem cells (GFP-MSCs) were transplanted via tali vein injection into the experimental mice. Then the mice were randomly divided into two groups, gavaged with either BSYJ solution (BSYJ group, n=12) or distilled water (DW group, n=12). 12 age-matched healthy C57BL/6J mice were fed regularly as normal control. At day 7, day 14, and day 28 after treatment, retina flat mounting was used to detect the homing of mesenchymal stem cells at the retina. Double-labeling immunofluorescence was used to determine the differentiation of mesenchymal stem cells. Results: At 7, 14, 28 days after treatment, the numbers of GFP-MSCs detected by retina flatmount were 10.2 ± 2.5, 14.5 ± 3.4 and 18.7 ± 5.8, respectively in the distilled water group, while 15.7 ± 3.8, 32.3 ± 3.5 and 77.3 ± 6.4 in BSYJ group, the differences between the two groups were significant (p < 0.05). At 28 days after treatment, it was shown by double staining immunofluorescence that there were more GFP positive cells in the retina of BSYJ group than that of the DW group, but none of the cells expressed RPE specific genes such as RPE65 and CRALBP, or photoreceptor genes such as recoverin and rhodopsin either in BSYJ group or DW group. However, GFAP positive cells were found among the cells labeled with GFP, and the double labeling cells were much more in the BSYJ group than the distilled water group. Conclusion: BSYJ could promote homing of mesenchymal stem cells at the retina of age-related macular degeneration model mice induced by NaIO₃, and the differentiation towards to glial cells. Acknowledgement: National Natural Foundation of China (No: 81473736, 81674033,81973912).

Keywords: BSYJ, differentiation, homing, mesenchymal stem cells

Procedia PDF Downloads 146
147 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 248
146 Inertia Friction Pull Plug Welding, a New Weld Repair Technique of Aluminium Friction Stir Welding

Authors: Guoqing Wang, Yanhua Zhao, Lina Zhang, Jingbin Bai, Ruican Zhu

Abstract:

Friction stir welding with bobbin tool is a simple technique compared to conventional FSW since the backing fixture is no longer needed and assembling labor is reduced. It gets adopted more and more in the aerospace industry as a result. However, a post-weld problem, the left keyhole, has to be fixed by forced repair welding. To close the keyhole, the conventional fusion repair could be an option if the joint properties are not deteriorated; friction push plug welding, a forced repair, could be another except that a rigid support unit is demanded at the back of the weldment. Therefore, neither of the above ways is satisfaction in welding a large enclosed structure, like rocket propellant tank. Although friction pulls plug welding does not need a backing plate, the wide applications are still held back because of the disadvantages in respects of unappropriated tensile stress, (i.e. excessive stress causing neck shrinkage of plug that will bring about back defects while insufficient stress causing lack of heat input that will bring about face defects), complicated welding parameters (including rotation speed, transverse speed, friction force, welding pressure and upset),short welding time (approx. 0.5 sec.), narrow windows and poor stability of process. In this research, an updated technique called inertia friction pull plug welding, and its equipment was developed. The influencing rules of technological parameters on joint properties of inertia friction pull plug welding were observed. The microstructure characteristics were analyzed. Based on the elementary performance data acquired, the conclusion is made that the uniform energy provided by an inertia flywheel will be a guarantee to a stable welding process. Meanwhile, due to the abandon of backing plate, the inertia friction pull plug welding is considered as a promising technique in repairing keyhole of bobbin tool FSW and point type defects of aluminium base material.

Keywords: defect repairing, equipment, inertia friction pull plug welding, technological parameters

Procedia PDF Downloads 314
145 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 466
144 A Study of Female Casino Dealers' Job Stress and Job Satisfaction: The Case of Macau

Authors: Xinrong Zong, Tao Zhang

Abstract:

Macau is known as the Oriental Monte Carlo and its economy depends on gambling heavily. The dealer is the key position of the gambling industry, at the end of the fourth quarter of 2015, there were over 24,000 dealers among the 56,000 full-time employees in gambling industry. More than half of dealers were female. The dealer is also called 'Croupier', the main responsibilities of them are shuffling, dealing, processing chips, rolling dice game and inspecting play. Due to the limited land and small population of Macao, the government has not allowed hiring foreign domestic dealers since Macao developed temporary gambling industry. Therefore, local dealers enjoy special advantages but also bear the high stresses from work. From the middle of last year, with the reduced income of gambling, and the decline of mainland gamblers as well as VIP lounges, the working time of dealers increased greatly. Thus, many problems occurred in this condition, such as the rise of working pressures, psychological pressures and family-responsibility pressures, which may affect job satisfaction as well. Because of the less research of dealer satisfaction, and a lack of standing on feminine perspective to analyze female dealers, this study will focus on investigating the relationship between working pressure and job satisfaction from feminine view. Several issues will be discussed specifically: firstly, to understand current situation of the working pressures and job satisfactions of female dealers in different ages; secondly, to research if there is any relevance between working pressures and job satisfactions of female dealers in different ages; thirdly, to find out the relationship between dealers' working pressures and job satisfactions in different ages. This paper combined qualitative approach with quantitative approach selected samples by convenient sampling. The research showed the female dealers from diverse ages have different kinds of working pressures; second, job satisfactions of the female dealers in different ages are dissimilar; moreover, there is negative correlation between working pressure and job satisfaction of female dealer in different ages' groups; last but not the least, working pressure has a significant negative impact on job satisfaction. The research result will provide a reference value for the Macau gambling business. It is a pattern to improve dealers' working environment, to increase employees' job satisfaction, as well as to offer tourists a better service, which can help to attract more and more visitors from a good image of Macau gaming and tourism.

Keywords: female dealers, job satisfaction, working pressure, Macau

Procedia PDF Downloads 297
143 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing

Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin

Abstract:

Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.

Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network

Procedia PDF Downloads 81
142 Exploring an Exome Target Capture Method for Cross-Species Population Genetic Studies

Authors: Benjamin A. Ha, Marco Morselli, Xinhui Paige Zhang, Elizabeth A. C. Heath-Heckman, Jonathan B. Puritz, David K. Jacobs

Abstract:

Next-generation sequencing has enhanced the ability to acquire massive amounts of sequence data to address classic population genetic questions for non-model organisms. Targeted approaches allow for cost effective or more precise analyses of relevant sequences; although, many such techniques require a known genome and it can be costly to purchase probes from a company. This is challenging for non-model organisms with no published genome and can be expensive for large population genetic studies. Expressed exome capture sequencing (EecSeq) synthesizes probes in the lab from expressed mRNA, which is used to capture and sequence the coding regions of genomic DNA from a pooled suite of samples. A normalization step produces probes to recover transcripts from a wide range of expression levels. This approach offers low cost recovery of a broad range of genes in the genome. This research project expands on EecSeq to investigate if mRNA from one taxon may be used to capture relevant sequences from a series of increasingly less closely related taxa. For this purpose, we propose to use the endangered Northern Tidewater goby, Eucyclogobius newberryi, a non-model organism that inhabits California coastal lagoons. mRNA will be extracted from E. newberryi to create probes and capture exomes from eight other taxa, including the more at-risk Southern Tidewater goby, E. kristinae, and more divergent species. Captured exomes will be sequenced, analyzed bioinformatically and phylogenetically, then compared to previously generated phylogenies across this group of gobies. This will provide an assessment of the utility of the technique in cross-species studies and for analyzing low genetic variation within species as is the case for E. kristinae. This method has potential applications to provide economical ways to expand population genetic and evolutionary biology studies for non-model organisms.

Keywords: coastal lagoons, endangered species, non-model organism, target capture method

Procedia PDF Downloads 190
141 Inverted Geometry Ceramic Insulators in High Voltage Direct Current Electron Guns for Accelerators

Authors: C. Hernandez-Garcia, P. Adderley, D. Bullard, J. Grames, M. A. Mamun, G. Palacios-Serrano, M. Poelker, M. Stutzman, R. Suleiman, Y. Wang, , S. Zhang

Abstract:

High-energy nuclear physics experiments performed at the Jefferson Lab (JLab) Continuous Electron Beam Accelerator Facility require a beam of spin-polarized ps-long electron bunches. The electron beam is generated when a circularly polarized laser beam illuminates a GaAs semiconductor photocathode biased at hundreds of kV dc inside an ultra-high vacuum chamber. The photocathode is mounted on highly polished stainless steel electrodes electrically isolated by means of a conical-shape ceramic insulator that extends into the vacuum chamber, serving as the cathode electrode support structure. The assembly is known as a dc photogun, which has to simultaneously meet the following criteria: high voltage to manage space charge forces within the electron bunch, ultra-high vacuum conditions to preserve the photocathode quantum efficiency, no field emission to prevent gas load when field emitted electrons impact the vacuum chamber, and finally no voltage breakdown for robust operation. Over the past decade, JLab has tested and implemented the use of inverted geometry ceramic insulators connected to commercial high voltage cables to operate a photogun at 200kV dc with a 10 cm long insulator, and a larger version at 300kV dc with 20 cm long insulator. Plans to develop a third photogun operating at 400kV dc to meet the stringent requirements of the proposed International Linear Collider are underway at JLab, utilizing even larger inverted insulators. This contribution describes approaches that have been successful in solving challenging problems related to breakdown and field emission, such as triple-point junction screening electrodes, mechanical polishing to achieve mirror-like surface finish and high voltage conditioning procedures with Kr gas to extinguish field emission.

Keywords: electron guns, high voltage techniques, insulators, vacuum insulation

Procedia PDF Downloads 113
140 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data

Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang

Abstract:

The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.

Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds

Procedia PDF Downloads 116
139 Translation and Transculturality in Contemporary Chinese Art: A Case Study of Gu Wenda’s 'Forest of Stone Steles' and 'United Nations: Temple of Heaven'

Authors: Rui Zhang

Abstract:

Translation has been elevated to one of the key notions in contemporary cultural discourse for a wide range of fields. It focuses not only on communication or transmission of meaning between different languages, but also on ways in which the very act of translation can be understood as a metaphor for cultural process. In recent years, the notion of translation is employed by some contemporary Chinese artists in a conceptual way, whose works contribute to constructing/deconstructing global/local cultural discourse and their own cultural identities. This study examines two artworks by contemporary Chinese artist Gu Wenda from a translational perspective, namely Forest of Stone Steles - Retranslation & Rewriting of Tang Poetry and United Nations - China Monument: Temple of Heaven, aiming to broaden the scope of Translation Studies to investigate visual culture and enrich methodological approach to contemporary Chinese art. Focusing on the relationship between translation, visuality and materiality in these two works, this study explores the nature of translation as part of the production of cultural discourse in the age of globalization as well as a way of establishing cultural identity. Gu Wenda, one of the most prestigious artists in contemporary China, is considered a pioneer in ‘85 Art Movement of China, and thereafter he went abroad for his artistic pursuits. His transnational experience enriches his cultural identity and the underlying discourse constructed/deconstructed in many of his works. In the two works already mentioned, the concept of translation is deployed by Gu Wenda on both linguistic level and metaphorical level for artistic expression. These two works produce discourses in which the artist’s perception of cultural identity in a transnational context is articulated by the tension between source text and target text. Based on the conceptual framework of cultural identity proposed by Stuart Hall, analyses of Gu Wenda’s cultural identity revealed through translation in these two works are centred on two axes, i.e., the axis of similarity and continuity with Chinese intellectual culture and the axis of difference and rupture with it, and the dialogic relationship between these two vectors. It argues that besides serving as a means of constructing visuality in the two works, translation metaphorizes Gu Wenda’s journey from overcoming his cultural identity anxiety to re-establishing a transcultural identity embedded in the underlying discourse.

Keywords: contemporary Chinese art, cultural identity, transculturality, translation

Procedia PDF Downloads 498
138 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 95
137 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor

Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey

Abstract:

Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.

Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency

Procedia PDF Downloads 137
136 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure

Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao

Abstract:

Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.

Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond

Procedia PDF Downloads 138
135 The Psychosocial Issues and Support Needs of Patients with Chronic Kidney Disease Undergoing Hemodialysis: A Qualitative Study from Nepal

Authors: Akriti Kafle Baral, Ruixing Zhang, Dzifa K Lalit, Manthar M Alli

Abstract:

Introduction: Hemodialysis is the most common type of dialysis globally approximately million are reported to receive this type of dialysis. Psychosocial issues in hemodialysis are the psychological and socioeconomic burdens emanating from the initiation and course of treatment and have the potential for gross deterioration in the quality of life and general well-being of patients. Understanding the psychosocial issues and needs of patients undergoing hemodialysis could pave the way for comprehensive support and therapies designed to reduce stress, improve social support, and foster mental resilience. Objectives: The aim of this study was to explore the psychosocial issues and support needs of patients undergoing hemodialysis at a tertiary care center in Nepal. Methods: A qualitative descriptive study was conducted among 20 purposefully selected patients attending hemodialysis treatment at Pokhara Academy of Health Sciences, Nepal. Data was analyzed via thematic analysis. Results: The study resulted in three major themes which included Emotional, psychological, and spiritual struggles, Social and economic impacts, and Support and information needs. Moreover, 16 sub-themes emerged which are Frustration with daily life, Constant fear of death, Thoughts of self-harm, Perceived Burden on Family, Sense of Divine Punishment, Sense of Unfairness, Fear about future uncertainties, Social avoidance, Social stigmatization, Loss of employment, Financial strain, Transportation challenges, Need for early, clear and comprehensive information, Need for support and reassurance from family, Support through peer connections, and Reassurance from healthcare providers. Conclusion: The findings of this study indicate that patients undergoing hemodialysis in Nepal experience numerous hardships and multifaceted struggles that require support from different dimensions. Establishing robust support systems that include family involvement, peer networks, and effective communication from healthcare professionals can significantly mitigate feelings of anxiety and isolation.

Keywords: hemodialysis, psychosocial issues, support needs, chronic kidney disease, end stage renal disease, Nepal

Procedia PDF Downloads 14
134 Stochastic Fleet Sizing and Routing in Drone Delivery

Authors: Amin Karimi, Lele Zhang, Mark Fackrell

Abstract:

Rural-to-urban population migrations are a global phenomenon, with projections indicating that by 2050, 68% of the world's population will inhabit densely populated urban centers. Concurrently, the popularity of e-commerce shopping has surged, evidenced by a 51% increase in total e-commerce sales from 2017 to 2021. Consequently, distribution and logistics systems, integral to effective supply chain management, confront escalating hurdles in efficiently delivering and distributing products within bustling urban environments. Additionally, events like environmental challenges and the COVID-19 pandemic have indicated that decision-makers are facing numerous sources of uncertainty. Therefore, to design an efficient and reliable logistics system, uncertainty must be considered. In this study, it examine fleet sizing and routing while considering uncertainty in demand rate. Fleet sizing is typically a strategic-level decision, while routing is an operational-level one. In this study, a carrier must make two types of decisions: strategic-level decisions regarding the number and types of drones to be purchased, and operational-level decisions regarding planning routes based on available fleet and realized demand. If the available fleets are insufficient to serve some customers, the carrier must outsource that delivery at a relatively high cost, calculated per order. With this hierarchy of decisions, it can model the problem using two-stage stochastic programming. The first-stage decisions involve planning the number and type of drones to be purchased, while the second-stage decisions involve planning routes. To solve this model, it employ logic-based benders decomposition, which decomposes the problem into a master problem and a set of sub-problems. The master problem becomes a mixed integer programming model to find the best fleet sizing decisions, and the sub-problems become capacitated vehicle routing problems considering battery status. Additionally, it assume a heterogeneous fleet based on load and battery capacity, and it consider that battery health deteriorates over time as it plan for multiple periods.

Keywords: drone-delivery, stochastic demand, VRP, fleet sizing

Procedia PDF Downloads 60