Search results for: Meyer classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2242

Search results for: Meyer classification

1402 An Autonomous Passive Acoustic System for Detection, Tracking and Classification of Motorboats in Portofino Sea

Authors: A. Casale, J. Alessi, C. N. Bianchi, G. Bozzini, M. Brunoldi, V. Cappanera, P. Corvisiero, G. Fanciulli, D. Grosso, N. Magnoli, A. Mandich, C. Melchiorre, C. Morri, P. Povero, N. Stasi, M. Taiuti, G. Viano, M. Wurtz

Abstract:

This work describes a real-time algorithm for detecting, tracking and classifying single motorboats, developed using the acoustic data recorded by a hydrophone array within the framework of EU LIFE + project ARION (LIFE09NAT/IT/000190). The project aims to improve the conservation status of bottlenose dolphins through a real-time simultaneous monitoring of their population and surface ship traffic. A Passive Acoustic Monitoring (PAM) system is installed on two autonomous permanent marine buoys, located close to the boundaries of the Marine Protected Area (MPA) of Portofino (Ligurian Sea- Italy). Detecting surface ships is also a necessity in many other sensible areas, such as wind farms, oil platforms, and harbours. A PAM system could be an effective alternative to the usual monitoring systems, as radar or active sonar, for localizing unauthorized ship presence or illegal activities, with the advantage of not revealing its presence. Each ARION buoy consists of a particular type of structure, named meda elastica (elastic beacon) composed of a main pole, about 30-meter length, emerging for 7 meters, anchored to a mooring of 30 tons at 90 m depth by an anti-twist steel wire. Each buoy is equipped with a floating element and a hydrophone tetrahedron array, whose raw data are send via a Wi-Fi bridge to a ground station where real-time analysis is performed. Bottlenose dolphin detection algorithm and ship monitoring algorithm are operating in parallel and in real time. Three modules were developed and commissioned for ship monitoring. The first is the detection algorithm, based on Time Difference Of Arrival (TDOA) measurements, i.e., the evaluation of angular direction of the target respect to each buoy and the triangulation for obtaining the target position. The second is the tracking algorithm, based on a Kalman filter, i.e., the estimate of the real course and speed of the target through a predictor filter. At last, the classification algorithm is based on the DEMON method, i.e., the extraction of the acoustic signature of single vessels. The following results were obtained; the detection algorithm succeeded in evaluating the bearing angle with respect to each buoy and the position of the target, with an uncertainty of 2 degrees and a maximum range of 2.5 km. The tracking algorithm succeeded in reconstructing the real vessel courses and estimating the speed with an accuracy of 20% respect to the Automatic Identification System (AIS) signals. The classification algorithm succeeded in isolating the acoustic signature of single vessels, demonstrating its temporal stability and the consistency of both buoys results. As reference, the results were compared with the Hilbert transform of single channel signals. The algorithm for tracking multiple targets is ready to be developed, thanks to the modularity of the single ship algorithm: the classification module will enumerate and identify all targets present in the study area; for each of them, the detection module and the tracking module will be applied to monitor their course.

Keywords: acoustic-noise, bottlenose-dolphin, hydrophone, motorboat

Procedia PDF Downloads 174
1401 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 269
1400 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB

Procedia PDF Downloads 148
1399 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 139
1398 Locus of Control, Metacognitive Knowledge, Metacognitive Regulation, and Student Performance in an Introductory Economics Course

Authors: Ahmad A. Kader

Abstract:

In the principles of Microeconomics course taught during the Fall Semester 2019, 158out of 179 students participated in the completion of two questionnaires and a survey describing their demographic and academic profiles. The two questionnaires include the 29 items of the Rotter Locus of Control Scale and the 52 items of the Schraw andDennisonMetacognitive Awareness Scale. The 52 items consist of 17 items describing knowledge of cognition and 37 items describing the regulation of cognition. The paper is intended to show the combined influence of locus of control, metacognitive knowledge, and metacognitive regulation on student performance. The survey covers variables that have been tested and recognized in economic education literature, which include GPA, gender, age, course level, race, student classification, whether the course was required or elective, employments, whether a high school economic course was taken, and attendance. Regression results show that of the economic education variables, GPA, classification, whether the course was required or elective, and attendance are the only significant variables in their influence on student grade. Of the educational psychology variables, the regression results show that the locus of control variable has a negative and significant effect, while the metacognitive knowledge variable has a positive and significant effect on student grade. Also, the adjusted R square value increased markedly with the addition of the locus of control, metacognitive knowledge, and metacognitive regulation variables to the regression equation. The t test results also show that students who are internally oriented and are high on the metacognitive knowledge scale significantly outperform students who are externally oriented and are low on the metacognitive knowledge scale. The implication of these results for educators is discussed in the paper.

Keywords: locus of control, metacognitive knowledge, metacognitive regulation, student performance, economic education

Procedia PDF Downloads 125
1397 Classification of Coughing and Breathing Activities Using Wearable and a Light-Weight DL Model

Authors: Subham Ghosh, Arnab Nandi

Abstract:

Background: The proliferation of Wireless Body Area Networks (WBAN) and Internet of Things (IoT) applications demonstrates the potential for continuous monitoring of physical changes in the body. These technologies are vital for health monitoring tasks, such as identifying coughing and breathing activities, which are necessary for disease diagnosis and management. Monitoring activities such as coughing and deep breathing can provide valuable insights into a variety of medical issues. Wearable radio-based antenna sensors, which are lightweight and easy to incorporate into clothing or portable goods, provide continuous monitoring. This mobility gives it a substantial advantage over stationary environmental sensors like as cameras and radar, which are constrained to certain places. Furthermore, using compressive techniques provides benefits such as reduced data transmission speeds and memory needs. These wearable sensors offer more advanced and diverse health monitoring capabilities. Methodology: This study analyzes the feasibility of using a semi-flexible antenna operating at 2.4 GHz (ISM band) and positioned around the neck and near the mouth to identify three activities: coughing, deep breathing, and idleness. Vector network analyzer (VNA) is used to collect time-varying complex reflection coefficient data from perturbed antenna nearfield. The reflection coefficient (S11) conveys nuanced information caused by simultaneous variations in the nearfield radiation of three activities across time. The signatures are sparsely represented with gaussian windowed Gabor spectrograms. The Gabor spectrogram is used as a sparse representation approach, which reassigns the ridges of the spectrogram images to improve their resolution and focus on essential components. The antenna is biocompatible in terms of specific absorption rate (SAR). The sparsely represented Gabor spectrogram pictures are fed into a lightweight deep learning (DL) model for feature extraction and classification. Two antenna locations are investigated in order to determine the most effective localization for three different activities. Findings: Cross-validation techniques were used on data from both locations. Due to the complex form of the recorded S11, separate analyzes and assessments were performed on the magnitude, phase, and their combination. The combination of magnitude and phase fared better than the separate analyses. Various sliding window sizes, ranging from 1 to 5 seconds, were tested to find the best window for activity classification. It was discovered that a neck-mounted design was effective at detecting the three unique behaviors.

Keywords: activity recognition, antenna, deep-learning, time-frequency

Procedia PDF Downloads 16
1396 Investigating the Morphological Patterns of Lip Prints and Their Effectiveness in Individualization and Gender Determination in Pakistani Population

Authors: Makhdoom Saad Wasim Ghouri, Muneeba Butt, Mohammad Ashraf Tahir, Rashid Bhatti, Akbar Ali, Abdul Rehman, Abdul Basit, Muzzamel Rehman, Shahbaz Aslam, Farakh Mansoor, Ahmad Fayyaz, Hadia Siddiqui

Abstract:

Lip print analysis (Cheiloscopy) is the new emerging technique that might be the guardian angel in establishing the personal identity. Cheiloscopy is basically the study of elevations and depressions present on the external surface of the lips. In our study, 600 lip prints samples were taken (300 males and 300 females). Lip prints of each individual were divided into four quadrants and the upper middle portion. For general classification, middle part of the lower lip almost 10 mm wide would be taken into consideration. After analysis of lip-prints, our results show that lip prints are the unique and permanent character of every individual. No two lip print was matched with each other even of the identical twins. Our study reveals that there is equal distribution of lip print patterns among all the four quadrants of lips and the upper middle portion; these distributions were statistically analyzed by applying chi-square test which shows the significant results. In general classification, 5 lip print types/patterns were studied, Type 1 (Vertical lines), Type 2 (Branched pattern), Type 3 (Intersected pattern), Type 4 (Reticular pattern) and Type 5 (Undetermined). Type 1 and Type 2 were found to be the most frequent patterns in female population, while Type 3 and Type 4 most commonly found in male population. These results were also analyzed by applying Chi-square test, and the results show significance statistically. Thus, establishing sex determination on the basis of lip print types among the gender. Type 5 was the least common pattern among genders.

Keywords: cheiloscopy, distribution, quadrants, sex determination

Procedia PDF Downloads 300
1395 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan

Abstract:

This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 319
1394 Prevalence of Malocclusion and Assessment of Orthodontic Treatment Needs in Malay Transfusion-Dependent Thalassemia Patients

Authors: Mohamed H. Kosba, Heba A. Ibrahim, H. Rozita

Abstract:

Statement of the Problem: The life expectancy for transfusion-dependent thalassemia patients has increased dramatically with iron-chelation therapy and other modern management modalities. In these patients, the most dominant maxillofacial manifestations are protrusion of zygomatic bones and premaxilla due to the hyperplasia of bone marrow. The purpose of this study is to determine the prevalence of malocclusion and orthodontic treatment needs according to the Dental Aesthetic Index (DAI) among Malay transfusion-dependent thalassemia patients. Orientation: This is a cross-sectional study consist of 43 Malay transfusion-dependent thalassemia patients, 22 males, and 19 females with the mean age of 15.9 years old (SD 3.58). The subjects were selected randomly from patients attending Paediatrics and Internal Medicine Clinic at Hospital USM and Hospital Sultana Bahiyah. The subjects were assessed for malocclusion according to Angle’s classification, and orthodontic treatment needs using DAI. The results show that 22 of the subjects (51.1%) have class II malocclusion, 12 subjects (28%) have class І, while 9 subjects (20.9%) have class Ⅲ. The assessment of orthodontic treatment needs to reveal 22 cases (51.1%) fall in the normal/minor needs category, 12 subjects (28%) fall in the severe and very severe category, while 9 subjects (20.9%) fall in the definite category. Conclusion & Significance: Half of Malay transfusion-dependent thalassemia patients have Class Ⅱmalocclusion. About 28% had malocclusion and required orthodontic treatment. This research shows that Malay transfusion-dependent thalassemia may require orthodontic management; earlier intervention to reduce the complexity of the treatment later, suggesting functional appliance as a suitable treatment option for them, a twin block appliance together with headgear to restrict maxillary growth suggested for management. The current protocol implemented by the Malaysian Ministry of Health for the management of these patients seems to be sufficient since the result shows that about 28% require orthodontic treatment need, according to DAI.

Keywords: prevalence, DAI, thalassaemia, angle classification

Procedia PDF Downloads 143
1393 Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia

Authors: Sarono, Hamim Zaky Hadibasyir, dan Ridho Kurniawan

Abstract:

Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year.

Keywords: production estimation, paddy, remote sensing, geography information system, land suitability

Procedia PDF Downloads 342
1392 Small and Medium Sized Ports between Specialisation and Diversification: A Framework Tool for Sustainable Development

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European ports are facing high political pressure through the implementation of initiatives such as the European Green Deal or IMO's 2030 targets (Fit for 55). However, small and medium-sized ports face even higher challenges compared to bigger ones due to lower capacities in various fields such as investments, infra-structure, Human Resources, and funding opportunities. Small and Medium-Sized Ports (SMPs) roles in economic systems are various depending on their specific functionality in maritime ecosystems. Depending on their different situations, being an actor in multiport gateways, aligned to core ports, regional nodes in peripheries for the hinterland, specialized cluster members, or logistical nodes, different strategic business models may be applied to increase SMPs' competitiveness among other bigger ports. Additionally, SMPs are facing more challenges for future development in terms of digital and green transition of their operations. Thus, it is necessary to evaluate the own strategical position and apply management strategies alongside the regional growth and innovation strategies for diversification or specialisation of own port businesses. The research uses inductive perspectives to set up a transferable framework based on case studies to be analysed. In line with particular research and document analysis, qualitative approaches were considered. The research is based on a deep literature review on SMPs as well as theories on diversification and specialisation. Existing theories from different fields are evaluated on their application for the port sector and these specific maritime actors, paying respect to enabling innovation incorporation to enhance digital and environmental transition with fu-ture perspectives for SMPs. The paper aims to provide a decision-making matrix for the strategic positioning of SMPs in Europe, including opportunities to get access to particular EU funds for future development alongside the Regional In-novation Strategies on Smart Specialisation.

Keywords: strategic planning, sustainability transition, competitiveness portfolio, EU green deal

Procedia PDF Downloads 81
1391 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 91
1390 Influence of Geologic and Geotechnical Dataset Resolution on Regional Liquefaction Assessment of the Lower Wairau Plains

Authors: Omer Altaf, Liam Wotherspoon, Rolando Orense

Abstract:

The Wairau Plains are located in the northeast of the South Island of New Zealand, with alluvial deposits of fine-grained silts and sands combined with low-lying topography suggesting the presence of liquefiable deposits over significant portions of the region. Liquefaction manifestations were observed in past earthquakes, including the 1848 Marlborough and 1855 Wairarapa earthquakes, and more recently during the 2013 Lake Grassmere and 2016 Kaikōura earthquakes. Therefore, a good understanding of the deposits that may be susceptible to liquefaction is important for land use planning in the region and to allow developers and asset owners to appropriately address their risk. For this purpose, multiple approaches have been employed to develop regional-scale maps showing the liquefaction vulnerability categories for the region. After applying semi-qualitative criteria linked to geologic age and deposit type, the higher resolution surface mapping of geomorphologic characteristics encompassing the Wairau River and the Opaoa River was used for screening. A detailed basin geologic model developed for groundwater modelling was analysed to provide a higher level of resolution than the surface-geology based classification. This is used to identify the thickness of near-surface gravel deposits, providing an improved understanding of the presence or lack of potentially non-liquefiable crust deposits. This paper describes the methodology adopted for this project and focuses on the influence of geomorphic characteristics and analysis of the detailed geologic basin model on the liquefaction classification of the Lower Wairau Plains.

Keywords: liquefaction, earthquake, cone penetration test, mapping, liquefaction-induced damage

Procedia PDF Downloads 176
1389 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Sahin Emrah Amrahov, Fatih Aybar, Serhat Dogan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: rough sets, decision rules, rule induction, classification

Procedia PDF Downloads 529
1388 Intergenerational Class Mobility in Greece: A Cross-Cohort Analysis with Evidence from European Union-Statistics on Income and Living Conditions

Authors: G. Stamatopoulou, M. Symeonaki, C. Michalopoulou

Abstract:

In this work, we study the intergenerational social mobility in Greece, in order to provide up-to-date evidence on the changes in the mobility patterns throughout the years. An analysis for both men and women aged between 25-64 years old is carried out. Three main research objectives are addressed. First, we aim to examine the relationship between the socio-economic status of parents and their children. Secondly, we investigate the evolution of the mobility patterns between different birth cohorts. Finally, the role of education is explored in shaping the mobility patterns. For the analysis, we draw data on both parental and individuals' social outcomes from different national databases. The social class of origins and destination is measured according to the European Socio-Economic Classification (ESeC), while the respondents' educational attainment is coded into categories based on the International Standard Classification of Education (ISCED). Applying the Markov transition probability theory, and a range of measures and models, this work focuses on the magnitude and the direction of the movements that take place in the Greek labour market, as well as the level of social fluidity. Three-way mobility tables are presented, where the transition probabilities between the classes of destination and origins are calculated for different cohorts. Additionally, a range of absolute and relative mobility rates, as well as distance measures, are presented. The study covers a large time span beginning in 1940 until 1995, shedding light on the effects of the national institutional processes on the social movements of individuals. Given the evidence on the mobility patterns of the most recent birth cohorts, we also investigate the possible effects of the 2008 economic crisis.

Keywords: cohort analysis, education, Greece, intergenerational mobility, social class

Procedia PDF Downloads 130
1387 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.

Keywords: linked open data, information integration, digital libraries, data mining

Procedia PDF Downloads 428
1386 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan

Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed

Abstract:

This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.

Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis

Procedia PDF Downloads 76
1385 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on

Authors: Mahesh Kumar Jat, Manisha Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: remote sensing, GIS, object based, classification

Procedia PDF Downloads 133
1384 An Analysis on Clustering Based Gene Selection and Classification for Gene Expression Data

Authors: K. Sathishkumar, V. Thiagarasu

Abstract:

Due to recent advances in DNA microarray technology, it is now feasible to obtain gene expression profiles of tissue samples at relatively low costs. Many scientists around the world use the advantage of this gene profiling to characterize complex biological circumstances and diseases. Microarray techniques that are used in genome-wide gene expression and genome mutation analysis help scientists and physicians in understanding of the pathophysiological mechanisms, in diagnoses and prognoses, and choosing treatment plans. DNA microarray technology has now made it possible to simultaneously monitor the expression levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremendous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. This work presents an analysis of several clustering algorithms proposed to deals with the gene expression data effectively. The existing clustering algorithms like Support Vector Machine (SVM), K-means algorithm and evolutionary algorithm etc. are analyzed thoroughly to identify the advantages and limitations. The performance evaluation of the existing algorithms is carried out to determine the best approach. In order to improve the classification performance of the best approach in terms of Accuracy, Convergence Behavior and processing time, a hybrid clustering based optimization approach has been proposed.

Keywords: microarray technology, gene expression data, clustering, gene Selection

Procedia PDF Downloads 325
1383 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 188
1382 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 185
1381 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques

Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña

Abstract:

The automatic detection of indigenous languages ​​in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.

Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages

Procedia PDF Downloads 18
1380 The Effect of Bihemisferic Transcranial Direct Current Stimulation Therapy on Upper Extremity Motor Functions in Stroke Patients

Authors: Dilek Cetin Alisar, Oya Umit Yemisci, Selin Ozen, Seyhan Sozay

Abstract:

New approaches and treatment modalities are being developed to make patients more functional and independent in stroke rehabilitation. One of these approaches is transcranial direct stimulation therapy (tDCS), which aims to improve the hemiplegic upper limb function of stroke patients. tDCS therapy is not in the routine rehabilitation program; however, the studies about tDCS therapy on stroke rehabilitation was increased in recent years. Evaluate the effect of tDCS treatment on upper extremity motor function in patients with subacute stroke was aimed in our study. 32 stroke patients (16 tDCS group, 16 sham groups) who were hospitalized for rehabilitation in Başkent University Physical Medicine and Rehabilitation Clinic between 01.08.2016-20.01-2018 were included in the study. The conventional upper limb rehabilitation program was used for both tDCS and control group patients for 3 weeks, 5 days a week, for 60-120 minutes a day. In addition to the conventional stroke rehabilitation program in the tDAS group, bihemispheric tDCS was administered for 30 minutes daily. Patients were evaluated before treatment and after 1 week of treatment. Functional independence measure self-care score (FIM), Brunnstorm Recovery Stage (BRS), and Fugl-Meyer (FM) upper extremity motor function scale were used. There was no difference in demographic characteristics between the groups. There were no significant differences between BRS and FM scores in two groups, but there was a significant difference FIM score (p=0.05. FIM, BRS, and FM scores are significantly in the tDCS group, when before therapy and after 1 week of therapy, however, no difference is found in the shame group (p < 0,001). When FBS and FM scores were compared, there were statistical significant differences in tDCS group (p < 0,001). In conclusion, this randomized double-blind study showed that bihemispheric tDCS treatment was found to be superior to upper extremity motor and functional enhancement in addition to conventional rehabilitation methods in subacute stroke patients. In order for tDCS therapy to be used routinely in stroke rehabilitation, there is a need for more comprehensive, long-termed, randomized controlled clinical trials in order to find answers to many questions, such as the duration and intensity of treatment.

Keywords: cortical stimulation, motor function, rehabilitation, stroke

Procedia PDF Downloads 128
1379 Selection of New Business in Brazilian Companies Incubators through Hierarchical Methodology

Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira

Abstract:

In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.

Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator

Procedia PDF Downloads 375
1378 A Technique for Planning the Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan

Authors: P. Panwalkar, K. Veravalli, R. Gwynn, M. Tofighi, R. Clement, A. Mofidi

Abstract:

When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-five tibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau. The involvement of part of plateau was compared with position of buttress plate position which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 19 fractures were type-2 fracture and 13 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity and twenty-six fractures were not buttressed and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly the rate of the malunion was 0%. When fracture was partly buttressed 33% were anatomically united and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity and eleven anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (x2=7.8, p=0.0052). Conclusion: The classification based on involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictably satisfactory union. There may be a correlation between injury shape of the tibial plateau and the fracture type.

Keywords: knee, tibial plateau, trauma, CT scan, surgery

Procedia PDF Downloads 147
1377 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.

Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability

Procedia PDF Downloads 107
1376 The Effects on Hand Function with Robot-Assisted Rehabilitation for Children with Cerebral Palsy: A Pilot Study

Authors: Fen-Ling Kuo, Hsin-Chieh Lee, Han-Yun Hsiao, Jui-Chi Lin

Abstract:

Background: Children with cerebral palsy (CP) usually suffered from mild to maximum upper limb dysfunction such as having difficulty in reaching and picking up objects, which profoundly affects their participation in activities of daily living (ADLs). Robot-assisted rehabilitation provides intensive physical training in improving sensorimotor function of the hand. Many researchers have extensively studied the effects of robot-assisted therapy (RT) for the paretic upper limb in patients with stroke in recent years. However, few studies have examined the effect of RT on hand function in children with CP. The purpose of this study is to investigate the effectiveness of Gloreha Sinfonia, a robotic device with a dynamic arm support system mainly focus on distal upper-limb training, on improvements of hand function and ADLs in children with CP. Methods: Seven children with moderate CP were recruited in this case series study. RT using Gloreha Sinfonia was performed 2 sessions per week, 60 min per session for 6 consecutive weeks, with 12 times in total. Outcome measures included the Fugl-Meyer Assessment-upper extremity (FMA-UE), the Box and Block Test, the electromyography activity of the extensor digitorum communis muscle (EDC) and brachioradialis (BR), a grip dynamometer for motor evaluation, and the ABILHAND-Kids for measuring manual ability to manage daily activities, were performed at baseline, after 12 sessions (end of treatment) and at the 1-month follow-up. Results: After 6 weeks of robot-assisted treatment of hand function, there were significant increases in FMA-UE shoulder/elbow scores (p=0.002), FMA-UE wrist/hand scores (p=0.002), and FMA-UE total scores (p=0.002). There were also significant improvements in the BR mean value (p = 0.015) and electrical agonist-antagonist muscle ratio (p=0.041) in grasping a 1-inch cube task. These gains were maintained for a month after the end of the intervention. Conclusion: RT using Gloreha Sinfonia for hand function training may contribute toward the improvement of upper extremity function and efficacy in recruiting BR muscle in children with CP. The results were maintained at one month after intervention.

Keywords: activities of daily living, cerebral palsy, hand function, robotic rehabilitation

Procedia PDF Downloads 116
1375 Using Hierarchical Methodology to Assist the Selection of New Business in Brazilian Companies Incubators

Authors: Izabel Cristina Zattar, Gilberto Passos Lima, Guilherme Schünemann de Oliveira

Abstract:

In Brazil, there are several institutions committed to the development of new businesses based on product innovation. Among them are business incubators, universities and science institutes. Business incubators can be defined as nurseries for new companies, which may be in the technology segment, discussed in this article. Business incubators provide services related to infrastructure, such as physical space and meeting rooms. Besides these services, incubators also offer assistance in the form of information and communication, access to finance, relationship networks and business monitoring and mentoring processes. Business incubators support not all technology companies. One of the business incubators tasks is to assess the nature and feasibility of new business proposals. To assist in this goal, this paper proposes a methodology for evaluating new business using the Analytic Hierarchy Process (AHP). This paper presents the concepts used in the assessing methodology application for new business, concepts that have been tested with positive results in practice. This study counts on three main steps: first, a hierarchy was built, based on new business manuals used by the business incubators. These books and manuals relate business selection requirements, such as the innovation status and other technological aspects. Then, a questionnaire was generated, in order to guide incubator experts in the parity comparisons at all hierarchy levels. The weights of each requirement are calculated from information obtained from the questionnaire responses. Finally, the proposed method was applied to evaluate five new business proposals, which were applying to be part of a company incubator. The main result is the classification of these new businesses, which helped the incubator experts to decide what companies were more eligible to work with. This classification may also be helpful to the decision-making process of business incubators in future selection processes.

Keywords: Analytic Hierarchy Process (AHP), Brazilian companies incubators, technology companies, incubator

Procedia PDF Downloads 404
1374 An Exploratory Factor Analysis Approach to Explore Barriers to Oracy Proficiency among Thai EFL Learners

Authors: Patsawut Sukserm

Abstract:

Oracy proficiency, encompassing both speaking and listening skills, is vital for EFL learners, yet Thai university students often face significant challenges in developing these abilities. This study aims to identify and analyze the barriers that hinder oracy proficiency in EFL learners. To achieve this, a questionnaire was developed based on a comprehensive review of the literature and administered to a large cohort of Thai EFL students. The data were subjected to exploratory factor analysis (EFA) to validate the questionnaire and uncover the underlying factors influencing learners’ performance. The results revealed that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.912, and Bartlett’s test of sphericity was significant at 2345.423 (p < 0.05), confirming the suitability for factor analysis. There are five main barriers in oracy proficiency, namely Listening and Comprehension Obstacles (LCO), Accent and Speech Understanding (ASU), Speaking Anxiety and Confidence Issues (SACI), Fluency and Expression Issues (FEI), and Grammar and Conversational Understanding (GCU), with eigenvalues ranging from 1.066 to 12.990, explaining 60.305 % of the variance of the 32 variables. These findings highlight the complexity of the challenges faced by Thai EFL learners and emphasize the need for diverse and authentic listening experiences, a supportive classroom environment, or balanced grammar instruction. The findings of the study suggest that educators, curriculum developers, and policy makers should implement evidence-based strategies to address these barriers in order to improve Thai EFL learners’ oral proficiency and enhance their overall academic and professional success. Also, this study will discuss these findings in depth, offering evidence-based strategies for addressing these barriers. Recommendations include integrating diverse and authentic listening experiences, fostering a supportive classroom environment, and providing targeted instruction in both speaking fluency and grammar. The study’s implications extend to educators, curriculum developers, and policymakers, offering practical solutions to enhance learners’ oracy proficiency and support their academic and professional development.

Keywords: exploratory factor analysis, barriers, oracy proficiency, EFL learners

Procedia PDF Downloads 23
1373 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 267