Search results for: applications of aluminum metal matrix composites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10692

Search results for: applications of aluminum metal matrix composites

2172 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 266
2171 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects

Authors: Brian Romansky

Abstract:

There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.

Keywords: automation, BIM, robot, ROI.

Procedia PDF Downloads 65
2170 Stimulation of Nerve Tissue Differentiation and Development Using Scaffold-Based Cell Culture in Bioreactors

Authors: Simon Grossemy, Peggy P. Y. Chan, Pauline M. Doran

Abstract:

Nerve tissue engineering is the main field of research aimed at finding an alternative to autografts as a treatment for nerve injuries. Scaffolds are used as a support to enhance nerve regeneration. In order to successfully design novel scaffolds and in vitro cell culture systems, a deep understanding of the factors affecting nerve regeneration processes is needed. Physical and biological parameters associated with the culture environment have been identified as potentially influential in nerve cell differentiation, including electrical stimulation, exposure to extracellular-matrix (ECM) proteins, dynamic medium conditions and co-culture with glial cells. The mechanisms involved in driving the cell to differentiation in the presence of these factors are poorly understood; the complexity of each of them raises the possibility that they may strongly influence each other. Some questions that arise in investigating nerve regeneration include: What are the best protein coatings to promote neural cell attachment? Is the scaffold design suitable for providing all the required factors combined? What is the influence of dynamic stimulation on cell viability and differentiation? In order to study these effects, scaffolds adaptable to bioreactor culture conditions were designed to allow electrical stimulation of cells exposed to ECM proteins, all within a dynamic medium environment. Gold coatings were used to make the surface of viscose rayon microfiber scaffolds (VRMS) conductive, and poly-L-lysine (PLL) and laminin (LN) surface coatings were used to mimic the ECM environment and allow the attachment of rat PC12 neural cells. The robustness of the coatings was analyzed by surface resistivity measurements, scanning electron microscope (SEM) observation and immunocytochemistry. Cell attachment to protein coatings of PLL, LN and PLL+LN was studied using DNA quantification with Hoechst. The double coating of PLL+LN was selected based on high levels of PC12 cell attachment and the reported advantages of laminin for neural differentiation. The underlying gold coatings were shown to be biocompatible using cell proliferation and live/dead staining assays. Coatings exhibiting stable properties over time under dynamic fluid conditions were developed; indeed, cell attachment and the conductive power of the scaffolds were maintained over 2 weeks of bioreactor operation. These scaffolds are promising research tools for understanding complex neural cell behavior. They have been used to investigate major factors in the physical culture environment that affect nerve cell viability and differentiation, including electrical stimulation, bioreactor hydrodynamic conditions, and combinations of these parameters. The cell and tissue differentiation response was evaluated using DNA quantification, immunocytochemistry, RT-qPCR and functional analyses.

Keywords: bioreactor, electrical stimulation, nerve differentiation, PC12 cells, scaffold

Procedia PDF Downloads 218
2169 EWMA and MEWMA Control Charts for Monitoring Mean and Variance in Industrial Processes

Authors: L. A. Toro, N. Prieto, J. J. Vargas

Abstract:

There are many control charts for monitoring mean and variance. Among these, the X y R, X y S, S2 Hotteling and Shewhart control charts, for mentioning some, are widely used for monitoring mean a variance in industrial processes. In particular, the Shewhart charts are based on the information about the process contained in the current observation only and ignore any information given by the entire sequence of points. Moreover, that the Shewhart chart is a control chart without memory. Consequently, Shewhart control charts are found to be less sensitive in detecting smaller shifts, particularly smaller than 1.5 times of the standard deviation. These kind of small shifts are important in many industrial applications. In this study and effective alternative to Shewhart control chart was implemented. In case of univariate process an Exponentially Moving Average (EWMA) control chart was developed and Multivariate Exponentially Moving Average (MEWMA) control chart in case of multivariate process. Both of these charts were based on memory and perform better that Shewhart chart while detecting smaller shifts. In these charts, information the past sample is cumulated up the current sample and then the decision about the process control is taken. The mentioned characteristic of EWMA and MEWMA charts, are of the paramount importance when it is necessary to control industrial process, because it is possible to correct or predict problems in the processes before they come to a dangerous limit.

Keywords: control charts, multivariate exponentially moving average (MEWMA), exponentially moving average (EWMA), industrial control process

Procedia PDF Downloads 331
2168 Determination of Hydrolisis Condition in the Extraction of Fatty Acids from Pinchagua's (Opisthonema libertate) Heads, a By-Product of Sardine Industry

Authors: Belen Carrillo, Mauricio Mosquera

Abstract:

Fatty acids are bioactive compounds widely used as nutritional supplements in the food and pharmaceutical industry. Bluefish such as sardines have a large variety of these fatty acids in their composition. The objective of this project is to extract these compounds from fishing wastes, to do this, heads of known species as Pinchagua (Opistonema libertate) were used. The conducted study represents a simplified alternative for obtaining and simultaneous saponification of oil through basic hydrolysis, which separates lipids from protein and saponifies sample all the same time to isolate the fatty acid accurately through salts formation. To do these different concentrations of sodium hydroxide were used, it was demonstrated at a concentration of 1 M the highest yield of saponified oil recovery corresponding a value of 3,64% was obtained. Subsequently, the saponified oil was subjected to an acid hydrolysis in which fatty acids were isolated. Different sulfuric acid concentrations and temperatures for the process were tested. Thus, it was shown that the great fatty acids variety were obtained at a 60 °C temperature and sulfuric acid concentration of 50% v/v. Among the obtained compounds the presence of acids such as palmitic, lauric, caproic and myristic are highlighted. Applications of this type of elements are varied and widely used in the nutritional supplements development. Thus, the described methodology proposes a simple mechanism in the revaluation of fishing industry wastes that allow directly generate high added value elements.

Keywords: fatty acids, hydrolysis, Pinchagua, saponification

Procedia PDF Downloads 156
2167 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 392
2166 Failure Load Investigations in Adhesively Bonded Single-Strap Joints of Dissimilar Materials Using Cohesive Zone Model

Authors: B. Paygozar, S.A. Dizaji

Abstract:

Adhesive bonding is a highly valued type of fastening mechanical parts in complex structures, where joining some simple components is always needed. This method is of several merits, such as uniform stress distribution, appropriate bonding strength, and fatigue performance, and lightness, thereby outweighing other sorts of bonding methods. This study is to investigate the failure load of adhesive single-strap joints, including adherends of different sizes and materials. This kind of adhesive joint is very practical in different industries, especially when repairing the existing joints or attaching substrates of dissimilar materials. In this research, experimentally validated numerical analyses carried out in a commercial finite element package, ABAQUS, are utilized to extract the failure loads of the joints, based on the cohesive zone model. In addition, the stress analyses of the substrates are performed in order to acquire the effects of lowering the thickness of the substrates on the stress distribution inside them to avoid designs suffering from the necking or failure of the adherends. It was found out that this method of bonding is really feasible in joining dissimilar materials which can be utilized in a variety of applications. Moreover, the stress analyses indicated the minimum thickness for the adherends so as to avoid the failure of them.

Keywords: cohesive zone model, dissimilar materials, failure load, single strap joint

Procedia PDF Downloads 103
2165 Exploration Tools for Tantalum-Bearing Pegmatites along Kibara Belt, Central and Southwestern Uganda

Authors: Sadat Sembatya

Abstract:

Tantalum metal is used in addressing capacitance challenge in the 21st-century technology growth. Tantalum is rarely found in its elemental form. Hence it’s often found with niobium and the radioactive elements of thorium and uranium. Industrial processes are required to extract pure tantalum. Its deposits are mainly oxide associated and exist in Ta-Nb oxides such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals are of minor importance. The stability and chemical inertness of tantalum makes it a valuable substance for laboratory equipment and a substitute for platinum. Each period of Tantalum ore formation is characterized by specific mineralogical and geochemical features. Compositions of Columbite-Group Minerals (CGM) are variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (DR Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite-tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian-Nubian Shield (Egypt, Ethiopia) and the Tantalite Valley pegmatites (southern Namibia). There are large compositional variations through Fe-Mn fractionation, followed by Nb-Ta fractionation. These are typical for pegmatites usually associated with very coarse quartz-feldspar-mica granites. They are young granitic systems of the Kibara Belt of Central Africa and the Older Granites of Nigeria. Unlike ‘simple’ Be-pegmatites, most Ta-Nb rich pegmatites have the most complex zoning. Hence we need systematic exploration tools to find and rapidly assess the potential of different pegmatites. The pegmatites exist as known deposits (e.g., abandoned mines) and the exposed or buried pegmatites. We investigate rocks and minerals to trace for the possibility of the effect of hydrothermal alteration mainly for exposed pegmatites, do mineralogical study to prove evidence of gradual replacement and geochemistry to report the availability of trace elements which are good indicators of mineralisation. Pegmatites are not good geophysical responders resulting to the exclusion of the geophysics option. As for more advanced prospecting, we bulk samples from different zones first to establish their grades and characteristics, then make a pilot test plant because of big samples to aid in the quantitative characterization of zones, and then drill to reveal distribution and extent of different zones but not necessarily grade due to nugget effect. Rapid assessment tools are needed to assess grade and degree of fractionation in order to ‘rule in’ or ‘rule out’ a given pegmatite for future work. Pegmatite exploration is also unique, high risk and expensive hence right traceability system and certification for 3Ts are highly needed.

Keywords: exploration, mineralogy, pegmatites, tantalum

Procedia PDF Downloads 123
2164 The Effect of TiO₂ Nanoparticles on Zebrafish Embryos

Authors: Elena Maria Scalisi

Abstract:

Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored.

Keywords: nanoparticles, embryo zebrafish, HSP70, PARP-1

Procedia PDF Downloads 117
2163 Domain-Specific Languages Evaluation: A Literature Review and Experience Report

Authors: Sofia Meacham

Abstract:

In this abstract paper, the Domain-Specific Languages (DSL) evaluation will be presented based on existing literature and years of experience developing DSLs for several domains. The domains we worked on ranged from AI, business applications, and finances/accounting to health. In general, DSLs have been utilised in many domains to provide tailored and efficient solutions to address specific problems. Although they are a reputable method among highly technical circles and have also been used by non-technical experts with success, according to our knowledge, there isn’t a commonly accepted method for evaluating them. There are some methods that define criteria that are adaptations from the general software engineering quality criteria. Other literature focuses on the DSL usability aspect of evaluation and applies methods such as Human-Computer Interaction (HCI) and goal modeling. All these approaches are either hard to introduce, such as the goal modeling, or seem to ignore the domain-specific focus of the DSLs. From our experience, the DSLs have domain-specificity in their core, and consequently, the methods to evaluate them should also include domain-specific criteria in their core. The domain-specific criteria would require synergy between the domain experts and the DSL developers in the same way that DSLs cannot be developed without domain-experts involvement. Methods from agile and other software engineering practices, such as co-creation workshops, should be further emphasised and explored to facilitate this direction. Concluding, our latest experience and plans for DSLs evaluation will be presented and open for discussion.

Keywords: domain-specific languages, DSL evaluation, DSL usability, DSL quality metrics

Procedia PDF Downloads 84
2162 Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach

Authors: Mustapha Sadouk

Abstract:

This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications.

Keywords: bilayer materials, ultrasound, sensitivity analysis, equivalent fluid theory, dynamic tortuosity., porous material

Procedia PDF Downloads 58
2161 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 87
2160 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 116
2159 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 226
2158 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 300
2157 A Brief of Survey on Use of Videoconferencing in Teaching during Quarantine Conducted in Sao Paulo

Authors: Fernanda Laureti T. Ferreira, Kazuo Nishimoto

Abstract:

This paper presents a summary of the experience on videoconferencing tools that have been used to teach regular classes during this pandemic period in educational institutions in São Paulo, which tools and applications are most used and the challenges related to this mode of delivery. At this moment, the massive online education is not a choice of students or a structured development of education system, but a solution that emerged to attend urgent needs and it presents the opportunity to teach and learning available for the most students in this single time of social isolation that forced among others, this significant change for education, students, teachers, institutions and families. Distance education enables synchronous and asynchronous mode classes, and even though the current circumstances generate discomfort and uncertainty, on the other hand, there is a chance to promote a 'learning to learn'. The videoconference is a preferred choice of schools because synchronous mode to give more interaction between a group of students and teachers, but this mode requires specifics teacher competencies and skills, in addition to equipment and provision of adequate internet signal for all participants of the process. The approach is making use of known technical information about video conference tools and the results of search answered by a group of students, teachers, schools, and parents. The results presented refer to the perspectives of students and parents as respondents.

Keywords: distance education, interaction on education, online classes, synchronous e-learning, videoconference

Procedia PDF Downloads 100
2156 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 63
2155 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium

Authors: Shyam Ranjan Kumar, Shashikant Rajpal

Abstract:

Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.

Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe

Procedia PDF Downloads 171
2154 Development IoT System for Smart Maize Production in Nigeria

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Luka

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. In this research, an Internet of Things test kit was developed to fill in the gaps created by wet soil analysis. The kit comprises components that were used to measure Nitrogen, Phosphorous and potassium (N, P, K) soil content, soil temperature and soil moisture at a series of intervals. In this implementation, the fieldwork was carried out within 0.2 hectares of land divided into smaller plots. Nitrogen values from the three reps range from 14.8 – 15mg/kg, Phosphorous 20.2-21.4 mg/kg, and Potassium 50.2-53 mg/kg. This information with soil moisture information obtained enabled the farmers to make informed and precise decisions on fertilizer applications, and wastage was avoided.

Keywords: internet of things, soil Nutrients, test kit, soil temperature

Procedia PDF Downloads 33
2153 A Morphological Thinking Approach for Conceptualising Product-Service Systems Solutions

Authors: Nicolas Haber

Abstract:

The study addresses the conceptual design of Product-Service Systems (PSSs) as a means of innovating solutions with the aim of reducing the environmental load of conventional product based solutions. Functional approaches targeting PSS solutions are developed in instinctive methods within the constraints of the setting in which they are conceived. Adopting morphological matrices in designing PSS concepts allows a thorough understanding of the settings, stakeholders, and functional requirements. Additionally, such a methodology is robust and adaptable to product-oriented, use-oriented and result-oriented systems. The research is based on a functional decomposition of the task in a similar way as in product design; while extended to include service components, providers, and receivers, while assessing the adaptability and homogeneity of the selected components and actors. A use-oriented concept is presented via a practical case study at an agricultural boom-sprayer manufacturer to demonstrate the effectiveness of the morphological approach to justify its viability. Additionally, a life cycle analysis is carried out in order to evaluate the environmental advantages inherited in a PSS solution versus a conventional solution. In light of the applications presented, the morphological approach appears to be a valid and generic tactic to conceiving integrated solutions whilst capturing the interrelations between the actors and elements of an integrated product-service system.

Keywords: conceptual design, design for sustainability, functional decomposition, product-service systems

Procedia PDF Downloads 248
2152 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems

Authors: Lei Zhang

Abstract:

The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.

Keywords: classification system, land cover, ecosystem, carbon storage, object based

Procedia PDF Downloads 43
2151 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 186
2150 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Ross Lee, Pritpal Singh, Andrew Jester

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential

Procedia PDF Downloads 85
2149 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 413
2148 Spatial Variability of Soil Metal Contamination to Detect Cancer Risk Zones in Coimbatore Region of India

Authors: Aarthi Mariappan, Janani Selvaraj, P. B. Harathi, M. Prashanthi Devi

Abstract:

Anthropogenic modification of the urban environment has largely increased in the recent years in order to sustain the growing human population. Intense industrial activity, permanent and high traffic on the roads, a developed subterranean infrastructure network, land use patterns are just some specific characteristics. Every day, the urban environment is polluted by more or less toxic emissions, organic or metals wastes discharged from specific activities such as industrial, commercial, municipal. When these eventually deposit into the soil, the physical and chemical properties of the surrounding soil is changed, transforming it into a human exposure indicator. Metals are non-degradable and occur cumulative in soil due to regular deposits are a result of permanent human activity. Due to this, metals are a contaminant factor for soil when persistent over a long period of time and a possible danger for inhabitant’s health on prolonged exposure. Metals accumulated in contaminated soil may be transferred to humans directly, by inhaling the dust raised from top soil, or by ingesting, or by dermal contact and indirectly, through plants and animals grown on contaminated soil and used for food. Some metals, like Cu, Mn, Zn, are beneficial for human’s health and represent a danger only if their concentration is above permissible levels, but other metals, like Pb, As, Cd, Hg, are toxic even at trace level causing gastrointestinal and lung cancers. In urban areas, metals can be emitted from a wide variety of sources like industrial, residential, commercial activities. Our study interrogates the spatial distribution of heavy metals in soil in relation to their permissible levels and their association with the health risk to the urban population in Coimbatore, India. Coimbatore region is a high cancer risk zone and case records of gastro intestinal and respiratory cancer patients were collected from hospitals and geocoded in ArcGIS10.1. The data of patients pertaining to the urban limits were retained and checked for their diseases history based on their diagnosis and treatment. A disease map of cancer was prepared to show the disease distribution. It has been observed that in our study area Cr, Pb, As, Fe and Mg exceeded their permissible levels in the soil. Using spatial overlay analysis a relationship between environmental exposure to these potentially toxic elements in soil and cancer distribution in Coimbatore district was established to show areas of cancer risk. Through this, our study throws light on the impact of prolonged exposure to soil contamination in soil in the urban zones, thereby exploring the possibility to detect cancer risk zones and to create awareness among the exposed groups on cancer risk.

Keywords: soil contamination, cancer risk, spatial analysis, India

Procedia PDF Downloads 382
2147 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting

Authors: Kemal Polat

Abstract:

In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.

Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM

Procedia PDF Downloads 389
2146 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 246
2145 Mental Health and Technology: Evidence Review

Authors: Kylie Henderson

Abstract:

Adapting mental health interventions is important when providing support to those experiencing difficulties. This analysis aimed to explore and evaluate the effectiveness of various forms of mental health interventions. Literature that has analysed face-to-face (F2F), phone (Telehealth), mobile (mHealth) and online (e-interventions) interferences found all interventions were effective in reducing and treating symptoms of mental health disorders. F2F and Telehealth interventions facilitated greater engagement and client satisfaction. Due to accessibility and privacy, mHealth and e-interventions were the preferred methods of engagement with health services for youth and young adults. Regardless, these interventions still identified several barriers of high dropout, low adherence, and lack of awareness. Additionally, a large proportion of interventions lacked evidence-based foundations. Exploration of interventions that utilise a variety of interfaces, as well as incorporated evidence-based literature and clinician experience, show that they benefit those experiencing mental health difficulties. Applications like YourHealth+ provide a combination of interventions (F2F, mHealth, and e-interventions) to improve the wellbeing of job seekers and employment consults. Individuals that have used the application in conjunction with therapy have reported feeling more empowered and demonstrated improved wellbeing. Practitioners have also described improved confidence in their ability to provide support to clients. Therefore, it can be proposed that utilising a variety of interventions as well as incorporating literature and experience is beneficial to those experiencing mental health difficulties and to health practitioners.

Keywords: face-to-face, e-interventions, mHealth, YourHealth+

Procedia PDF Downloads 116
2144 Analysing the Permanent Deformation of Cohesive Subsoil Subject to Long Term Cyclic Train Loading

Authors: Natalie M. Wride, Xueyu Geng

Abstract:

Subgrade soils of railway infrastructure are subjected to a significant number of load applications over their design life. The use of slab track on existing and future proposed rail links requires a reduced maintenance and repair regime for the embankment subgrade, due to restricted access to the subgrade soils for remediation caused by cyclic deformation. It is, therefore, important to study the deformation behaviour of soft cohesive subsoils induced as a result of long term cyclic loading. In this study, a series of oedometer tests and cyclic triaxial tests (10,000 cycles) have been undertaken to investigate the undrained deformation behaviour of soft kaolin. X-ray Computer Tomography (CT) scanning of the samples has been performed to determine the change in porosity and soil structure density from the sample microstructure as a result of the laboratory testing regime undertaken. Combined with the examination of excess pore pressures and strains obtained from the cyclic triaxial tests, the results are compared with an existing analytical solution for long term settlement considering repeated low amplitude loading. Modifications to the analytical solution are presented based on the laboratory analysis that shows good agreement with further test data.

Keywords: creep, cyclic loading, deformation, long term settlement, train loading

Procedia PDF Downloads 273
2143 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 165