Search results for: urban energy consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13412

Search results for: urban energy consumption

5042 Melatonin Improved Vase Quality by Delaying Oxidation Reaction and Supplying More Energies in Cut Peony (Paeonia Lactiflora cv. Sarah)

Authors: Tai Chen, Caihuan Tian, Xiuxia Ren, Jingqi Xue, Xiuxin Zhang

Abstract:

The herbaceous peony has become increasingly popular worldwide in recent years, especially as a cut flower with great economic value. However, peony has a very short vase life, only 3-5 d usually, which seriously affects its commodity value. In this study, we used the cut peony (Paeonia lactiflora cv. Sarah) as a material and found that melatonin treatment significantly improved its postharvest performance. In the control group, its vase life was 4.8 d, accompanied by petal dropping at last; melatonin treatment (40 μM) increased this time to 6.9 d without petal dropping at the end. Further study showed that melatonin treatment significantly increased the activity of antioxidant enzymes as well as reduced sugar content in petals, whereas the starch content in petals decreased. These results indicated that melatonin treatment may delay the oxidation reaction caused by aging, which also provides extra energy for maintaining flowering. Through full-length transcriptome sequencing, a total of 2819 differentially expressed genes (DEGs) between control and melatonin treatment groups were identified. KEGG enrichment analysis showed that these DEGs were mainly involved in three pathways, including melatonin synthesis, starch and sucrose conversion, and plant disease resistance. After the RT-qPCR verification, we identified three DEGs, named PlBAM3, PlWRKY22 and PlTIP1, and they should play major roles in melatonin-improved postharvest performance. One possible reason is that PlBAM3 caused maltose production (by starch degradation), maintained the proline biosynthesis, and then alleviated oxidative stress. Another reason is that both PlBAM3 and PlWRKY22 are key drought resistance regulators, which have the ability to alleviate osmotic stress and improve water absorption, which may also help to improve the postharvest quality of cut peony. In addition, PlTIP1 is involved in the sugar signal pathway, indicating sugar may also as a signal substance during this process. Our work may give new ideas for developing new ways to prolong the vase life of cut peony and improve its commodity value eventually.

Keywords: cut peony, melatonin, vase life, oxidation reaction, energy supply, differentially expressed genes

Procedia PDF Downloads 45
5041 The Used of Ceramic Stove Cover and It’s Gap to the Efficiency of Water Boiling System

Authors: Agung Sugeng Widodo

Abstract:

Water boiling system (WBS) using conventional gas stove (CGS) is relatively inefficient unless its mechanism being considered. In this study, an addition of ceramic stove cover (CSC) to a CGS and the gap between CSC and pan have been assessed. Parameters as energy produced by fuel, CSC temperature and water temperature were used to analyze the performance of a CGS. The gaps were varied by 1 – 7 mm in a step of 1 mm. The results showed that a CSC able to increase the performance of a CGS significantly. In certain fuel rate of 0.75 l/m, the efficiency of a CGS obtained in a gap of 4 mm. The best efficiency obtained in this study was 46.4 % due to the optimum condition that achieved simultaneously in convection and radiation heat transfer processes of the heating system. CSC also indicated a good characteristic for covering heat release at the initially of WBS.

Keywords: WBS, CSC, CGS, efficiency, gap

Procedia PDF Downloads 266
5040 Evaluating Accessibility to Bangkok Mass Transit System: Case Study of Saphan Taksin BTS Station

Authors: Rungpansa Noichan, Bart Julien Dewancker

Abstract:

Access to the mass transit system, including rapid elevated and underground transport has become an outstanding issue for many cities. The mass transit access development should focus on behavioral responses of the different passenger groups. Moreover, it should consider about the appearance of intent-oriented action related accessibility that was explored from user’s satisfaction and attitudes related to services quality. This study aims to evaluate mass transit accessibility from passenger’s satisfaction, therefore, understanding the passenger’s attitudes about mass transit accessibility. The study area of this research is Bangkok Mass Transit system (BTS Skytrain) at Saphan Taksin station. 200 passengers at Saphan Taksin station were asked to rate the questionnaires survey that considers accessibility aspects of convenience, safety, feeder connectivity, and other dimensions. The survey was to find out the passenger attitudes and satisfaction for access to the BTS station, and the result shows several factors that influence the passenger choice of using the BTS as a public transportation mode and passenger’s opinion that needs to concern for the development mass transit system and accessibility performance.

Keywords: urban transportation, user satisfaction, accessibility, Bangkok mass transit

Procedia PDF Downloads 264
5039 Biogas Potential of Deinking Sludge from Wastepaper Recycling Industry: Influence of Dewatering Degree and High Calcium Carbonate Content

Authors: Moses Kolade Ogun, Ina Korner

Abstract:

To improve on the sustainable resource management in the wastepaper recycling industry, studies into the valorization of wastes generated by the industry are necessary. The industry produces different residues, among which is the deinking sludge (DS). The DS is generated from the deinking process and constitutes a major fraction of the residues generated by the European pulp and paper industry. The traditional treatment of DS by incineration is capital intensive due to energy requirement for dewatering and the need for complementary fuel source due to DS low calorific value. This could be replaced by a biotechnological approach. This study, therefore, investigated the biogas potential of different DS streams (different dewatering degrees) and the influence of the high calcium carbonate content of DS on its biogas potential. Dewatered DS (solid fraction) sample from filter press and the filtrate (liquid fraction) were collected from a partner wastepaper recycling company in Germany. The solid fraction and the liquid fraction were mixed in proportion to realize DS with different water content (55–91% fresh mass). Spiked samples of DS using deionized water, cellulose and calcium carbonate were prepared to simulate DS with varying calcium carbonate content (0– 40% dry matter). Seeding sludge was collected from an existing biogas plant treating sewage sludge in Germany. Biogas potential was studied using a 1-liter batch test system under the mesophilic condition and ran for 21 days. Specific biogas potential in the range 133- 230 NL/kg-organic dry matter was observed for DS samples investigated. It was found out that an increase in the liquid fraction leads to an increase in the specific biogas potential and a reduction in the absolute biogas potential (NL-biogas/ fresh mass). By comparing the absolute biogas potential curve and the specific biogas potential curve, an optimal dewatering degree corresponding to a water content of about 70% fresh mass was identified. This degree of dewatering is a compromise when factors such as biogas yield, reactor size, energy required for dewatering and operation cost are considered. No inhibitory influence was observed in the biogas potential of DS due to the reported high calcium carbonate content of DS. This study confirms that DS is a potential bioresource for biogas production. Further optimization such as nitrogen supplementation due to DS high C/N ratio can increase biogas yield.

Keywords: biogas, calcium carbonate, deinking sludge, dewatering, water content

Procedia PDF Downloads 174
5038 An Improved Photovolatic System Balancer Architecture

Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Cyuan-Jyun Wong

Abstract:

An improved PV balancer for photovoltaic applications is proposed in this paper. The proposed PV balancer senses the voltage and current of PV module and adjusts the output voltage of converter. Thus, the PV system can implement maximum power point tracking (MPPT) independently for each module whether it is under shading, different irradiation or degradation of PV cell. In addition, the cost of PV balancer can be reduced due to the low power rating of converter. To assess the effectiveness of the proposed system, two PV balancers are designed and verified through simulation under different shading conditions. The proposed PV balancers can provide more energy than the traditional PV balancer.

Keywords: MPPT, partial shading, PV System, converter

Procedia PDF Downloads 285
5037 Estimation of Aquifer Parameters Using Vertical Electrical Sounding in Ochudo City, Abakaliki Urban Nigeria

Authors: Moses. O. Eyankware, Benard I. Odoh, Omoleomo O. Omo-Irabor, Alex O. I. Selemo

Abstract:

Knowledge of hydraulic conductivity and transmissivity is essential for the determination of natural water flow through an aquifer. These parameters are commonly estimated from the analysis of electrical conductivity, soil properties and fluid flow data. In order to achieve a faster and cost effective analysis of aquifer parameters in Ochudo City in Abakaliki, this study relied on non-invasive geophysical methods. As part of this approach, Vertical Electrical Sounding (VES) was conducted at 20 sites in the study area for the identification of the vertical variation in subsurface lithology and for the characterization of the groundwater system. The area variously consists of between five to seven geoelectric layers of different thicknesses. Depth to aquifer ranges from 9.94 m-134.0 m while the thickness of the identified aquifer varies between 8.43 m and 44.31 m. Based on the electrical conductivity values of water samples collected from two boreholes and two hand-dug wells within the study area, the hydraulic conductivity was determined to range from 0.10 to 0.433 m/day. The estimated thickness of the aquifer and calculated hydraulic conductivity were used to derive the aquifer transmissivity. The results indicate that this parameter ranges from 1.58-7.56 m²/day with a formation factor of between 0.31-3.6.

Keywords: Asu river group, transmissivity, hydraulic conductivity, abakaliki, vertical electrical sounding (VES)

Procedia PDF Downloads 390
5036 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 75
5035 The Effect of Aluminum Oxide Nanoparticles on the Optical Properties of (PVP-PEG) Blend

Authors: Hussein Hakim, Zainab Al-Ramadhan, Ahmed Hashim

Abstract:

Polymer nano composites of polyvinylpyrrolidone and poly-ethylene glycol with different concentrations of aluminum oxide (Al2O3) nano particles have been prepared by solution cast method. The optical characterizations have been done by analyzing the absorption (A) spectra in the 300–800 nm spectral region. It was found that the optical energy gap decreases with the increasing of Al2O3 nano particles content. The optical constants (refractive index, extinction coefficient, real and imaginary parts of the dielectric constant) are changing with increasing aluminum oxide nano particle concentrations.

Keywords: nanocomposites, polyvinylpyrrolidone, optical constants, polymers, blend

Procedia PDF Downloads 419
5034 Multi-Criteria Decision Making Tool for Assessment of Biorefinery Strategies

Authors: Marzouk Benali, Jawad Jeaidi, Behrang Mansoornejad, Olumoye Ajao, Banafsheh Gilani, Nima Ghavidel Mehr

Abstract:

Canadian forest industry is seeking to identify and implement transformational strategies for enhanced financial performance through the emerging bioeconomy or more specifically through the concept of the biorefinery. For example, processing forest residues or surplus of biomass available on the mill sites for the production of biofuels, biochemicals and/or biomaterials is one of the attractive strategies along with traditional wood and paper products and cogenerated energy. There are many possible process-product biorefinery pathways, each associated with specific product portfolios with different levels of risk. Thus, it is not obvious which unique strategy forest industry should select and implement. Therefore, there is a need for analytical and design tools that enable evaluating biorefinery strategies based on a set of criteria considering a perspective of sustainability over the short and long terms, while selecting the existing core products as well as selecting the new product portfolio. In addition, it is critical to assess the manufacturing flexibility to internalize the risk from market price volatility of each targeted bio-based product in the product portfolio, prior to invest heavily in any biorefinery strategy. The proposed paper will focus on introducing a systematic methodology for designing integrated biorefineries using process systems engineering tools as well as a multi-criteria decision making framework to put forward the most effective biorefinery strategies that fulfill the needs of the forest industry. Topics to be covered will include market analysis, techno-economic assessment, cost accounting, energy integration analysis, life cycle assessment and supply chain analysis. This will be followed by describing the vision as well as the key features and functionalities of the I-BIOREF software platform, developed by CanmetENERGY of Natural Resources Canada. Two industrial case studies will be presented to support the robustness and flexibility of I-BIOREF software platform: i) An integrated Canadian Kraft pulp mill with lignin recovery process (namely, LignoBoost™); ii) A standalone biorefinery based on ethanol-organosolv process.

Keywords: biorefinery strategies, bioproducts, co-production, multi-criteria decision making, tool

Procedia PDF Downloads 224
5033 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 338
5032 Non-Invasive Viscosity Determination of Liquid Organic Hydrogen Carriers by Alteration of Temperature and Flow Velocity Using Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing, A. Kölpin

Abstract:

Chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC) is a very promising alternative to compression or cryogenics. These carriers have high energy density and allow at the same time efficient and safe storage of hydrogen under ambient conditions and without leakage losses. Another benefit of LOHC is the possibility to transport it using already available infrastructure for transport of fossil fuels. Efficient use of LOHC is related to a precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and represents simultaneously the modification in chemical structure of the carrier molecules. This variation can be detected in different physical properties like viscosity, permittivity or density. Thereby, each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. Avoiding invasive measurements has several severe advantages. Efforts are currently taken to provide a precise, non-invasive measurement method with equal or higher precision of the obtained results. This study investigates a method for determination of the viscosity of LOHC. Since the viscosity can retroactively derived from the degree of loading, permittivity is a target parameter as it is a suitable for determining the hydrogenation degree. This research analyses the influence of common physical properties on permittivity. The permittivity measurement system is based on a cavity resonator, an electromagnetic resonant structure, whose resonation frequency depends on its dimensions as well as the permittivity of the medium inside. For known resonator dimensions, the resonation frequency directly characterizes the permittivity. In order to determine the dependency of the permittivity on temperature and flow velocity, an experimental setup with heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were measured in the hundredths of the GHz range.

Keywords: liquid organic hydrogen carriers, measurement, permittivity, viscosity., temperature, flow process

Procedia PDF Downloads 97
5031 The Greek Theatre in Australia Until 1950

Authors: Papazafeiropoulou Olga

Abstract:

The first Greek expatriates created centers of culture in Australia from the beginning of the 19th century, in the large urban centers of the cities (Sydney, Melbourne, Brisbane, Adelaide, Perth). They created community theater according to their cultural standards, their socio-spiritual progress and development and their relationship with theatrical creation. At the same time, the Greek immigrants of the small towns and, especially of NSW, created their own temples of art, rebuilding theater buildings (theatres and cinemas), many of which are preserved to this day. Hellenism in Australia operated in the field of entertainment, reflecting the currents of the time and the global spread of mechanical developments. The Australian-born young people of the parish, as well as pioneering expatriates joined the theater and cinematographic events of Australia. They mobilized beyond the narrow confines of the parish, gaining recognition and projecting Hellenism to the Australian establishment. G. Paizis (A. Haggard), Dimitrios Ioannidis, Stelios Saligaros, Angela Parselli, Sofia Pergamali, Raoul Kardamatis, Adam Tavlaridis, John Lemonne, Rudy Ricco, Artemis Linou, distinguished themselves by writing their names in the history of Australian theater, as they served consequently the theatrical process, elevating the sentiment of the expatriate during the early years of its settlement in the Australian Commonwealth until 1950.

Keywords: greeks, commubity, australia, theatre

Procedia PDF Downloads 58
5030 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran

Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar

Abstract:

Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.

Keywords: listeria species, L. monocytogenes, antibiotic resistance, chicken carcass

Procedia PDF Downloads 376
5029 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 396
5028 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 319
5027 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil

Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy

Abstract:

This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.

Keywords: public engagement, public participation, science and technology studies, transgenic politics

Procedia PDF Downloads 301
5026 Impacts of Human Settlement Development on Highland View Wetland in Bizana, South Africa

Authors: Fikile Xaki, Zendy Magayiyana

Abstract:

The increasing population and urbanization, with the demand for land and development, has had adverse impacts on wetland areas which has resulted in changing the hydrology and water chemistry of wetlands, affecting the water supply and water quality in urban areas like the Highland View, a residential area in Mbizana, South Africa. The settlement development in Highland View has led to wetland degradation due to land uses like agriculture and conversion of wetland for settlement development. Interviews with the local community were conducted to show how settlement development on wetland affects them. The results indicated that the environmental rights of people as according to Section 24 of the South African Constitution are compromised, and sustainable development was not put into consideration during development. With the results from the survey - through questionnaires for the Mbizana Local Municipality and the community, it was clear that the community needs education and capacity building on wetland management and conservation. Geographic Information Systems (GIS) was used to map physical properties of the Highland View wetland and houses built on the wetland. With all the information gathered from the research, it was clear that local municipality, together with hydrologists, needs to develop an environmental management framework to protect the wetlands.

Keywords: sustainable development, wetlands, human settlement, water

Procedia PDF Downloads 343
5025 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 140
5024 Effect of Grain Size and Stress Parameters on Ratcheting Behaviour of Two Different Single Phase FCC Metals

Authors: Jayanta Kumar Mahato, Partha Sarathi De, Amrita Kundu, P. C. Chakraborti

Abstract:

Ratcheting is one of the most important phenomena to be considered for design and safety assessment of structural components subjected to stress controlled asymmetric cyclic loading in the elasto-plastic domain. In the present study uniaxial ratcheting behavior of commercially pure annealed OFHC copper and aluminium with two different grain sizes has been investigated. Stress-controlled tests have been conducted at various combinations of stress amplitude and mean stress. These stresses were selected in such a way that the ratio of equivalent stress amplitude (σₐeq) to ultimate tensile strength (σUTS) of the selected materials remains constant. It is found that irrespective of grain size the ratcheting fatigue lives decrease with the increase of both stress amplitude and mean stress following power relationships. However, the effect of stress amplitude on ratcheting lives is observed higher as compared to mean stress for both the FCC metals. It is also found that for both FCC metals ratcheting fatigue lives at a constant ratio of equivalent stress amplitude (σ ₐeq) to ultimate tensile strength (σUTS) are more in case fine grain size. So far ratcheting strain rate is concerned, it decreases rapidly within first few cycles and then a steady state is reached. Finally, the ratcheting strain rate increases up to the complete failure of the specimens due to a very large increase of true stress for a substantial reduction in cross-sectional area. The steady state ratcheting strain rate increases with the increase in both stress amplitude and mean stress. Interestingly, a unique perfectly power relationship between steady state ratcheting strain rate and cycles to failure has been found irrespective of stress combination for both FCC metals. Similar to ratcheting strain rate, the strain energy density decreases rapidly within first few cycles followed by steady state and then increases up to a failure of the specimens irrespective of stress combinations for both FCC metals; but strain energy density at steady state decreases with increase in mean stress and increases with the increase of stress amplitude. From the fractography study, it is found that the void density increases with the increase of maximum stress, but the void size and void density are almost same for any combination of stress parameters considering constant maximum stress.

Keywords: ratcheting phenomena, grain size, stress parameter, ratcheting lives, ratcheting strain rate

Procedia PDF Downloads 288
5023 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems

Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar

Abstract:

This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.

Keywords: daylighting, office environment, energy simulation, venetian blind

Procedia PDF Downloads 224
5022 Adsorption of 17a-Ethinylestradiol on Activated Carbon Based on Sewage Sludge in Aqueous Medium

Authors: Karoline Reis de Sena

Abstract:

Endocrine disruptors are unregulated or not fully regulated compounds, even in the most developed countries, and which can be a danger to the environment and human health. They pass untreated through the secondary stage of conventional wastewater treatment plants, then the effluent from the wastewater treatment plants is discharged into the rivers, upstream and downstream from the drinking water treatment plants that use the same river water as the tributary. Long-term consumption of drinking water containing low concentrations of these compounds can cause health problems; these are persistent in nature and difficult to remove. In this way, research on emerging pollutants is expanding and is fueled by progress in finding the appropriate method for treating wastewater. Adsorption is the most common separation process, it is a simple and low-cost operation, but it is not eco-efficient. Concomitant to this, biosorption arises, which is a subcategory of adsorption where the biosorbent is biomass and which presents numerous advantages when compared to conventional treatment methods, such as low cost, high efficiency, minimization of the use of chemicals, absence of need for additional nutrients, biosorbent regeneration capacity and the biomass used in the production of biosorbents are found in abundance in nature. Thus, the use of alternative materials, such as sewage sludge, for the synthesis of adsorbents has proved to be an economically viable alternative, together with the importance of valuing the generated by-product flows, as well as managing the problem of their correct disposal. In this work, an alternative for the management of sewage sludge is proposed, transforming it into activated carbon and using it in the adsorption process of 17a-ethinylestradiol.

Keywords: 17α-ethinylestradiol, adsorption, activated carbon, sewage sludge, micropollutants

Procedia PDF Downloads 90
5021 Isotopes Used in Comparing Indigenous and International Walnut (Juglans regia L.) Varieties

Authors: Raluca Popescu, Diana Costinel, Elisabeta-Irina Geana, Oana-Romina Botoran, Roxana-Elena Ionete, Yazan Falah Jadee 'Alabedallat, Mihai Botu

Abstract:

Walnut production is high in Romania, different varieties being cultivated dependent on high yield, disease resistance or quality of produce. Walnuts have a highly nutritional composition, the kernels containing essential fatty acids, where the unsaturated fraction is higher than in other types of nuts, quinones, tannins, minerals. Walnut consumption can lower the cholesterol, improve the arterial function and reduce inflammation. The purpose of this study is to determine and compare the composition of walnuts of indigenous and international varieties all grown in Romania, in order to identify high-quality indigenous varieties. Oil has been extracted from the nuts of 34 varieties, the fatty acids composition and IV (iodine value) being afterwards measured by NMR. Furthermore, δ13C of the extracted oil had been measured by IRMS to find specific isotopic fingerprints that can be used in authenticating the varieties. Chemometrics had been applied to the data in order to identify similarities and differences between the varieties. The total saturated fatty acids content (SFA) varied between n.d. and 23% molar, oleic acid between 17 and 35%, linoleic acid between 38 and 59%, linolenic acid between 8 and 14%, corresponding to iodine values (IV - total amount of unsaturation) ranging from 100 to 135. The varieties separated in four groups according to the fatty acids composition, each group containing an international variety, making possible the classification of the indigenous ones. At both ends of the unsaturation spectrum, international varieties had been found.

Keywords: δ13C-IRMS, fatty acids composition, 1H-NMR, walnut varieties

Procedia PDF Downloads 306
5020 Microstructure and Mechanical Properties Evaluation of Graphene-Reinforced AlSi10Mg Matrix Composite Produced by Powder Bed Fusion Process

Authors: Jitendar Kumar Tiwari, Ajay Mandal, N. Sathish, A. K. Srivastava

Abstract:

Since the last decade, graphene achieved great attention toward the progress of multifunction metal matrix composites, which are highly demanded in industries to develop energy-efficient systems. This study covers the two advanced aspects of the latest scientific endeavor, i.e., graphene as reinforcement in metallic materials and additive manufacturing (AM) as a processing technology. Herein, high-quality graphene and AlSi10Mg powder mechanically mixed by very low energy ball milling with 0.1 wt. % and 0.2 wt. % graphene. Mixed powder directly subjected to the powder bed fusion process, i.e., an AM technique to produce composite samples along with bare counterpart. The effects of graphene on porosity, microstructure, and mechanical properties were examined in this study. The volumetric distribution of pores was observed under X-ray computed tomography (CT). On the basis of relative density measurement by X-ray CT, it was observed that porosity increases after graphene addition, and pore morphology also transformed from spherical pores to enlarged flaky pores due to improper melting of composite powder. Furthermore, the microstructure suggests the grain refinement after graphene addition. The columnar grains were able to cross the melt pool boundaries in case of the bare sample, unlike composite samples. The smaller columnar grains were formed in composites due to heterogeneous nucleation by graphene platelets during solidification. The tensile properties get affected due to induced porosity irrespective of graphene reinforcement. The optimized tensile properties were achieved at 0.1 wt. % graphene. The increment in yield strength and ultimate tensile strength was 22% and 10%, respectively, for 0.1 wt. % graphene reinforced sample in comparison to bare counterpart while elongation decreases 20% for the same sample. The hardness indentations were taken mostly on the solid region in order to avoid the collapse of the pores. The hardness of the composite was increased progressively with graphene content. Around 30% of increment in hardness was achieved after the addition of 0.2 wt. % graphene. Therefore, it can be concluded that powder bed fusion can be adopted as a suitable technique to develop graphene reinforced AlSi10Mg composite. Though, some further process modification required to avoid the induced porosity after the addition of graphene, which can be addressed in future work.

Keywords: graphene, hardness, porosity, powder bed fusion, tensile properties

Procedia PDF Downloads 125
5019 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials

Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik

Abstract:

Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.

Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes

Procedia PDF Downloads 56
5018 Improve B-Tree Index’s Performance Using Lock-Free Hash Table

Authors: Zhanfeng Ma, Zhiping Xiong, Hu Yin, Zhengwei She, Aditya P. Gurajada, Tianlun Chen, Ying Li

Abstract:

Many RDBMS vendors use B-tree index to achieve high performance for point queries and range queries, and some of them also employ hash index to further enhance the performance as hash table is more efficient for point queries. However, there are extra overheads to maintain a separate hash index, for example, hash mapping for all data records must always be maintained, which results in more memory space consumption; locking, logging and other mechanisms are needed to guarantee ACID, which affects the concurrency and scalability of the system. To relieve the overheads, Hash Cached B-tree (HCB) index is proposed in this paper, which consists of a standard disk-based B-tree index and an additional in-memory lock-free hash table. Initially, only the B-tree index is constructed for all data records, the hash table is built on the fly based on runtime workload, only data records accessed by point queries are indexed using hash table, this helps reduce the memory footprint. Changes to hash table are done using compare-and-swap (CAS) without performing locking and logging, this helps improve the concurrency and avoid contention. The hash table is also optimized to be cache conscious. HCB index is implemented in SAP ASE database, compared with the standard B-tree index, early experiments and customer adoptions show significant performance improvement. This paper provides an overview of the design of HCB index and reports the experimental results.

Keywords: B-tree, compare-and-swap, lock-free hash table, point queries, range queries, SAP ASE database

Procedia PDF Downloads 283
5017 Climate Change and Food Security: The Legal Aspects with Special Focus on the European Union

Authors: M. Adamczak-Retecka, O. Hołub-Śniadach

Abstract:

Dangerous of climate change is now global problem and as such has a strategic priority also for the European Union. Europe and European citizens try to do their best to cut greenhouse gas emissions, moreover they substantially encourage other nations and regions to follow the same way. The European Commission and a number of Member States have developed adaptation strategies in order to help strengthen EU's resilience to the inevitable impacts of climate change. The EU has long been a driving force in international negotiations on climate change and was instrumental in the development of the UN Framework Convention on Climate Change. As the world's leading donor of development aid, the EU also provides substantial funding to help developing countries tackle climate change problem. Global warming influences human health, biodiversity, ecosystems but also many social and economic sectors. The aim of this paper is to focus on impact of claimant change on for food security. Food security challenges are directly related to globalization, climate change. It means that current and future food policy is exposed to all cross-cutting and that must be linked with environmental and climate targets, which supposed to be achieved. In the 7th EAP —The new general Union Environment Action Program to 2020, called “Living well, within the limits of our planet” EU has agreed to step up its efforts to protect natural capital, stimulate resource efficient, low carbon growth and innovation, and safeguard people’s health and wellbeing– while respecting the Earth’s natural limits.

Keywords: climate change, food security, sustainable food consumption, climate governance

Procedia PDF Downloads 175
5016 An Economic Analysis of Bottled Drinking Water Industry in India

Authors: Swadhin Mondal

Abstract:

While safe drinking water is an effective defense against the infection of water borne diseases, a large number of populations suffering from these diseases do not have access to safe drinking water due inadequacy of supply. Private entrepreneurs entered this sector and made bottled drinking water available by supplying various kinds of bottled water. In this study we found that the bottled drinking water industry has experienced a spectacular growth over the past two decades and it has a huge growth potential because of rising demand for safe drinking. High profit margin (217 %) is the main attraction to the entrepreneur to invest in this industry. Health awareness, lack of safe drinking water facilities, rising income, urbanization, migration and rising trend in tourism industries are the major influencing factors of demand for bottled drinking water (BDW). This industry also partially fulfills the demand for drinking water. More than 2 percent of household’s demands were met by this industry and many more households (additional 4 percent) coping with BDW during water crisis. Poor households spend around 4 percent of their total monthly household’s consumption expenditure on BDW which may have an adverse impact on household because households could have spent this for purchasing other goods. Like other developed counties, a large section of Indian households are shifting from their traditional sources of water to BDW. However, there are some concerns about the quality of BDW. Many cases, BDW contains chemical toxins at more than permissible level that can be harmful for health. Hence, there is an urgent need for appropriate intervention to regulate price, reduce potential harm and improve the quality of water provided by this industry.

Keywords: drinking water, public health public failure, privatization, development, public policy

Procedia PDF Downloads 330
5015 Simulation of 140 Kv X– Ray Tube by MCNP4C Code

Authors: Amin Sahebnasagh, Karim Adinehvand, Bakhtiar Azadbakht

Abstract:

In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev.

Keywords: x-spectrum, simulation, Monte Carlo, MCNP4C code

Procedia PDF Downloads 643
5014 Understanding Natural Resources Governance in Canada: The Role of Institutions, Interests, and Ideas in Alberta's Oil Sands Policy

Authors: Justine Salam

Abstract:

As a federal state, Canada’s constitutional arrangements regarding the management of natural resources is unique because it gives complete ownership and control of natural resources to the provinces (subnational level). However, the province of Alberta—home to the third largest oil reserves in the world—lags behind comparable jurisdictions in levying royalties on oil corporations, especially oil sands royalties. While Albertans own the oil sands, scholars have argued that natural resource exploitation in Alberta benefits corporations and industry more than it does Albertans. This study provides a systematic understanding of the causal factors affecting royalties in Alberta to map dynamics of power and how they manifest themselves during policy-making. Mounting domestic and global public pressure led Alberta to review its oil sands royalties twice in less than a decade through public-commissioned Royalty Review Panels, first in 2007 and again in 2015. The Panels’ task was to research best practices and to provide policy recommendations to the Government through public consultations with Albertans, industry, non-governmental organizations, and First Nations peoples. Both times, the Panels recommended a relative increase to oil sands royalties. However, irrespective of the Reviews’ recommendations, neither the right-wing 2007 Progressive Conservative Party (PC) nor the left-wing 2015 New Democratic Party (NDP) government—both committed to increase oil sands royalties—increased royalty intake. Why did two consecutive political parties at opposite ends of the political spectrum fail to account for the recommendations put forward by the Panel? Through a qualitative case-study analysis, this study assesses domestic and global causal factors for Alberta’s inability to raise oil sands royalties significantly after the two Reviews through an institutions, interests, and ideas framework. Indeed, causal factors can be global (e.g. market and price fluctuation) or domestic (e.g. oil companies’ influence on the Alberta government). The institutions, interests, and ideas framework is at the intersection of public policy, comparative studies, and political economy literatures, and therefore draws multi-faceted insights into the analysis. To account for institutions, the study proposes to review international trade agreements documents such as the North American Free Trade Agreement (NAFTA) because they have embedded Alberta’s oil sands into American energy security policy and tied Canadian and Albertan oil policy in legal international nods. To account for interests, such as how the oil lobby or the environment lobby can penetrate governmental decision-making spheres, the study draws on the Oil Sands Oral History project, a database of interviews from government officials and oil industry leaders at a pivotal time in Alberta’s oil industry, 2011-2013. Finally, to account for ideas, such as how narratives of Canada as a global ‘energy superpower’ and the importance of ‘energy security’ have dominated and polarized public discourse, the study relies on content analysis of Alberta-based pro-industry newspapers to trace the prevalence of these narratives. By mapping systematically the nods and dynamics of power at play in Alberta, the study sheds light on the factors that influence royalty policy-making in one of the largest industries in Canada.

Keywords: Alberta Canada, natural resources governance, oil sands, political economy

Procedia PDF Downloads 131
5013 Overview of Risk Management in Electricity Markets Using Financial Derivatives

Authors: Aparna Viswanath

Abstract:

Electricity spot prices are highly volatile under optimal generation capacity scenarios due to factors such as non-storability of electricity, peak demand at certain periods, generator outages, fuel uncertainty for renewable energy generators, huge investments and time needed for generation capacity expansion etc. As a result market participants are exposed to price and volume risk, which has led to the development of risk management practices. This paper provides an overview of risk management practices by market participants in electricity markets using financial derivatives.

Keywords: financial derivatives, forward, futures, options, risk management

Procedia PDF Downloads 473