Search results for: time domain reflectometry (TDR)
18551 Time Bound Parallel Processing of a Disaster Management Alert System Using Random Selection of Target Audience: Bangladesh Context
Authors: Hasan Al Bashar Abul Ulayee, AKM Saifun Nabi, MD Mesbah-Ul-Awal
Abstract:
Alert system for disaster management is common now a day and can play a vital role reducing devastation and saves lives and costs. An alert in right time can save thousands of human life, help to take shelter, manage other assets including live stocks and above all, a right time alert will help to take preparation to face and early recovery of the situation. In a country like Bangladesh where populations is more than 170 million and always facing different types of natural calamities and disasters, an early right time alert is very effective and implementation of alert system is challenging. The challenge comes from the time constraint of alerting the huge number of population. The other method of existing disaster management pre alert is traditional, sequential and non-selective so efficiency is not good enough. This paper describes a way by which alert can be provided to maximum number of people within the short time bound using parallel processing as well as random selection of selective target audience.Keywords: alert system, Bangladesh, disaster management, parallel processing, SMS
Procedia PDF Downloads 47018550 An Analysis of Mongolian Possessive Markers
Authors: Yaxuan Wang
Abstract:
It has long been a mystery that why the Mongolian possessive suffix, which is constrained by Condition A of binding theory, has the ability to probe a potential antecedent outside of its binding domain. This squib argues that binding theory alone is not sufficient to explain the linguistic facts and proposes an analysis adopting the Agree operation. The current analysis correctly predicts all the possible and impossible structures, with an additional hypothesis that Mongolian possessive suffixes serve as an antecedent for PROs in adjunct. The findings thus provide insights into how Agree operates in Mongolian language.Keywords: syntax, Mongolian, agreement, possessive particles
Procedia PDF Downloads 10118549 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy
Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim
Abstract:
As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy
Procedia PDF Downloads 59218548 The Modelling of Real Time Series Data
Authors: Valeria Bondarenko
Abstract:
We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.Keywords: mathematical model, random process, Wiener process, fractional Brownian motion
Procedia PDF Downloads 35718547 A Study for the Effect of Fire Initiated Location on Evacuation Success Rate
Authors: Jin A Ryu, Hee Sun Kim
Abstract:
As the number of fire accidents is gradually raising, many studies have been reported on evacuation. Previous studies have mostly focused on evaluating the safety of evacuation and the risk of fire in particular buildings. However, studies on effects of various parameters on evacuation have not been nearly done. Therefore, this paper aims at observing evacuation time under the effect of fire initiated location. In this study, evacuation simulations are performed on a 5-floor building located in Seoul, South Korea using the commercial program, Fire Dynamics Simulator with Evacuation (FDS+EVAC). Only the fourth and fifth floors are modeled with an assumption that fire starts in a room located on the fourth floor. The parameter for evacuation simulations is location of fire initiation to observe the evacuation time and safety. Results show that the location of fire initiation is closer to exit, the more time is taken to evacuate. The case having the nearest location of fire initiation to exit has the lowest ratio of successful occupants to the total occupants. In addition, for safety evaluation, the evacuation time calculated from computer simulation model is compared with the tolerable evacuation time according to code in Japan. As a result, all cases are completed within the tolerable evacuation time. This study allows predicting evacuation time under various conditions of fire and can be used to evaluate evacuation appropriateness and fire safety of building.Keywords: fire simulation, evacuation simulation, temperature, evacuation safety
Procedia PDF Downloads 34918546 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 35618545 A Survey on the Supervision Experience of Full-Time Intern Counseling Psychologist
Authors: Szu-Fan Chen, Cheng-Tseng Lin, Ting-Chia Lien
Abstract:
This study mainly focuses on understanding the current supervision experience of full-time intern counseling psychologists in Taiwan. This study took 197 full-time intern counseling psychologists as the research subjects, including 146 women (74%) and 51 men (26%). In terms of internship sites, the largest number of internships are in school sites (59%), followed by community sites (30%), and fewer in medical fields or corporate sites (only 11%). In addition, a survey was conducted on whether the subjects had full-time jobs before full-time internship. 42% did not have full-time workers, and 48% had full-time workers. However, among those who had full-time workers, 28% were engaged in work related to psychological counseling. 20% are engaged in work unrelated to psychological counseling. In the sample of this study, each person interviewed on average 2.68 internship institutions in total, and the current internship unit is the 2.29th institution interviewed. All (100%) full-time intern psychologists have entered into individual internship contracts with internship institutions. In terms of professional supervisor candidates, a total of 178 (90%) supervisors were appointed by internal personnel of the institution, and a total of 19 (10%) were hired as supervisors from outside the institution. Regarding the form of supervision, it is mostly conducted through individual supervision (98%), and up to 60% is conducted through discussion of written/oral case reports. In terms of supervision satisfaction, 47% were very satisfied, 28% were satisfied, 18% were OK, and 6% were dissatisfied. It is worth noting that the results of this study show that full-time intern counseling psychologists said that they are under pressure to accept supervision (30%). It is recommended that the internship system should standardize the qualification review and evaluation of internship institutions to facilitate institutional control. Furthermore, the personal difficulties of full-time intern psychologists need to be discussed with the internship institution and supervisor from time to time to jointly assist them in completing their professional studies stably and successfully. Finally, it is recommended that future researchers can use the interview method provided by the author to strengthen their understanding of the supervision experience of full-time intern counseling psychologists, so that in the future, this study can provide relevant specific and feasible suggestions for counseling practitioners and future researchers' reference.Keywords: full-time intern counseling psychologist, supervision experience, full-time intership, supervision
Procedia PDF Downloads 2118544 Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device
Authors: Wen Liang Chang
Abstract:
In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples.Keywords: second-hand device, preventive maintenance, replacement time, device failure
Procedia PDF Downloads 46818543 Wait-Optimized Scheduler Algorithm for Efficient Process Scheduling in Computer Systems
Authors: Md Habibur Rahman, Jaeho Kim
Abstract:
Efficient process scheduling is a crucial factor in ensuring optimal system performance and resource utilization in computer systems. While various algorithms have been proposed over the years, there are still limitations to their effectiveness. This paper introduces a new Wait-Optimized Scheduler (WOS) algorithm that aims to minimize process waiting time by dividing them into two layers and considering both process time and waiting time. The WOS algorithm is non-preemptive and prioritizes processes with the shortest WOS. In the first layer, each process runs for a predetermined duration, and any unfinished process is subsequently moved to the second layer, resulting in a decrease in response time. Whenever the first layer is free or the number of processes in the second layer is twice that of the first layer, the algorithm sorts all the processes in the second layer based on their remaining time minus waiting time and sends one process to the first layer to run. This ensures that all processes eventually run, optimizing waiting time. To evaluate the performance of the WOS algorithm, we conducted experiments comparing its performance with traditional scheduling algorithms such as First-Come-First-Serve (FCFS) and Shortest-Job-First (SJF). The results showed that the WOS algorithm outperformed the traditional algorithms in reducing the waiting time of processes, particularly in scenarios with a large number of short tasks with long wait times. Our study highlights the effectiveness of the WOS algorithm in improving process scheduling efficiency in computer systems. By reducing process waiting time, the WOS algorithm can improve system performance and resource utilization. The findings of this study provide valuable insights for researchers and practitioners in developing and implementing efficient process scheduling algorithms.Keywords: process scheduling, wait-optimized scheduler, response time, non-preemptive, waiting time, traditional scheduling algorithms, first-come-first-serve, shortest-job-first, system performance, resource utilization
Procedia PDF Downloads 9118542 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time
Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou
Abstract:
The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.
Procedia PDF Downloads 17118541 Surveying Apps in Dam Excavation
Authors: Ali Mohammadi
Abstract:
Whenever there is a need to dig the ground, the presence of a surveyor is required to control the map. In projects such as dams and tunnels, these controls are more important because any mistakes can increase the cost. Also, time is great importance in These projects have and one of the ways to reduce the drilling time is to use techniques that can reduce the mapping time in these projects. Nowadays, with the existence of mobile phones, we can design apps that perform calculations and drawing for us on the mobile phone. Also, if we have a device that requires a computer to access its information, by designing an app, we can transfer its information to the mobile phone and use it, so we will not need to go to the office.Keywords: app, tunnel, excavation, dam
Procedia PDF Downloads 6718540 Synthesis and Characterization of Cyclic PNC-28 Peptide, Residues 17–26 (ETFSDLWKLL), A Binding Domain of p53
Authors: Deepshikha Verma, V. N. Rajasekharan Pillai
Abstract:
The present study reports the synthesis of cyclic PNC-28 peptides with solid-phase peptide synthesis method. In the first step, we synthesize the linear PNC-28 Peptide and in the second step, we cyclize (N-to-C or head-to-tail cyclization) the linear PNC-28 peptide. The molecular formula of cyclic PNC-28 peptide is C64H88N12O16 and its m/z mass is ≈1233.64. Elemental analysis of cyclic PNC-28 is C, 59.99; H, 6.92; N, 13.12; O, 19.98. The characterization of LC-MS, CD, FT-IR, and 1HNMR has been done to confirm the successful synthesis and cyclization of linear PNC-28 peptides.Keywords: CD, FTIR, 1HNMR, cyclic peptide
Procedia PDF Downloads 13018539 Medical Images Enhancement Using New Dynamic Band Pass Filter
Authors: Abdellatif Baba
Abstract:
In order to facilitate medical images analysis by improving their quality and readability, we present in this paper a new dynamic band pass filter as a general and suitable operator for different types of medical images. Our objective is to enrich the details of any treated medical image to make it sufficiently clear enough to give an understood and simplified meaning even for unspecialized people in the medical domain.Keywords: medical image enhancement, dynamic band pass filter, analysis improvement
Procedia PDF Downloads 28918538 Influence of Moringa Leaves Extract on the Response of Hb Molecule to Dose Rates’ Changes: II. Relaxation Time and Its Thermodynamic Driven State Functions
Authors: Mohamed M. M. Elnasharty, Azhar M. Elwan
Abstract:
Irradiation deposits energy through ionisation changing the bio-system’s net dipole, allowing the use of dielectric parameters and thermodynamic state functions related to these parameters as biophysical detectors to electrical inhomogeneity within the biosystem. This part is concerned with the effect of Moringa leaves extract, natural supplement, on the response of the biosystem to two different dose rates of irradiation. Having Hb molecule as a representative to the biosystem to be least invasive to the biosystem, dielectric measurements were used to extract the relaxation time of certain process found in the Hb spectrum within the indicated frequency window and the interrelated thermodynamic state functions were calculated from the deduced relaxation time. The results showed that relaxation time was decreased for both dose rates indicating a strong influence of Moringa on the response of biosystem and consequently Hb molecule. This influence was presented in the relaxation time and other parameters as well.Keywords: activation energy, DC conductivity, dielectric relaxation, enthalpy change, Moringa leaves extract, relaxation time
Procedia PDF Downloads 14618537 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications
Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R
Abstract:
Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays
Procedia PDF Downloads 7918536 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression
Authors: Jiangang Shen
Abstract:
Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress
Procedia PDF Downloads 7618535 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs
Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres
Abstract:
Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval
Procedia PDF Downloads 9018534 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate
Procedia PDF Downloads 15218533 Improving Cost and Time Control of Construction Projects Management Practices in Nigeria
Authors: Mustapha Yakubu, Ahmed Usman, Hashim Ambursa
Abstract:
This paper presents the findings of a research which sought to investigate techniques used to improve cost and time control of construction projects management practice in Nigeria. However, there is limited research on issues surrounding the practical usage of these techniques. Data were collected through a questionnaire distributed to construction experts through a survey conducted on the 100 construction organisations and 50 construction consultancy firms in the Nigeria aimed at identifying common project cost and time control practices and factors inhibiting effective project control in practice. The study reveals that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.Keywords: construction project, cost control, Nigeria, time control
Procedia PDF Downloads 31218532 Numerical Study of Homogeneous Nanodroplet Growth
Authors: S. B. Q. Tran
Abstract:
Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth
Procedia PDF Downloads 27218531 Astronomical Panels of Measuring and Dividing Time in Ancient Egypt
Authors: Mohamed Saeed Ahmed Salman
Abstract:
The ancient Egyptians used the stars to measure time or, in a more precise sense, as one of the astronomical means of measuring time. These methods differed throughout the historical ages. They began with simple observations of observing astronomical phenomena and watching them, such as observing the movements of the stars in the sky. The year, to know the days, nights, and other means used to help set the time when the sky overcast, and so the researcher tries through archaeological evidence to demonstrate the knowledge of the ancient Egyptian stars of heaven, and movements through the first pre-history. It is not believed that the astronomical information possessed by the Egyptian was limited, and simple, it was reaching a level of almost optimal in terms of importance, and the goal he wanted to reach the ancient Egyptian, and also help him to know the time, and the passage of time; which ended in finally trying to find a system of timing and calculation of time. It was noted that there were signs that the stellar creed was known, and prosperous, especially since the pre-family ages, and this is evident on the inscriptions that come back to that period. The Egyptian realized that some of the stars remain visible at night, The ancient Egyptian was familiar with the daily journey of the stars. This is what was adopted in many paragraphs of the texts of the pyramids and its references to the rise of the deceased king of the heavenly world between the stars of the eternal sky. It was noted that the ancient Egyptian link between the doctrine of the star, we find that the public The lunar was known to the ancient Egyptians, and sang it for two years, and the stellar solar; but it was based on the appearance of the star Sirius, and this is the first means used to measure time and know the calendar stars.Keywords: ancient Egyptian, astronomical panels, Egyptian, astronomical
Procedia PDF Downloads 2118530 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method
Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito
Abstract:
In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.
Procedia PDF Downloads 49318529 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles
Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo
Abstract:
Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.Keywords: HRRP, NCTI, simulated/synthetic database, SVD
Procedia PDF Downloads 35418528 [Keynote Talk]: Discovering Liouville-Type Problems for p-Energy Minimizing Maps in Closed Half-Ellipsoids by Calculus Variation Method
Authors: Lina Wu, Jia Liu, Ye Li
Abstract:
The goal of this project is to investigate constant properties (called the Liouville-type Problem) for a p-stable map as a local or global minimum of a p-energy functional where the domain is a Euclidean space and the target space is a closed half-ellipsoid. The First and Second Variation Formulas for a p-energy functional has been applied in the Calculus Variation Method as computation techniques. Stokes’ Theorem, Cauchy-Schwarz Inequality, Hardy-Sobolev type Inequalities, and the Bochner Formula as estimation techniques have been used to estimate the lower bound and the upper bound of the derived p-Harmonic Stability Inequality. One challenging point in this project is to construct a family of variation maps such that the images of variation maps must be guaranteed in a closed half-ellipsoid. The other challenging point is to find a contradiction between the lower bound and the upper bound in an analysis of p-Harmonic Stability Inequality when a p-energy minimizing map is not constant. Therefore, the possibility of a non-constant p-energy minimizing map has been ruled out and the constant property for a p-energy minimizing map has been obtained. Our research finding is to explore the constant property for a p-stable map from a Euclidean space into a closed half-ellipsoid in a certain range of p. The certain range of p is determined by the dimension values of a Euclidean space (the domain) and an ellipsoid (the target space). The certain range of p is also bounded by the curvature values on an ellipsoid (that is, the ratio of the longest axis to the shortest axis). Regarding Liouville-type results for a p-stable map, our research finding on an ellipsoid is a generalization of mathematicians’ results on a sphere. Our result is also an extension of mathematicians’ Liouville-type results from a special ellipsoid with only one parameter to any ellipsoid with (n+1) parameters in the general setting.Keywords: Bochner formula, Calculus Stokes' Theorem, Cauchy-Schwarz Inequality, first and second variation formulas, Liouville-type problem, p-harmonic map
Procedia PDF Downloads 27418527 A Survey on the Status of Test Automation
Authors: Andrei Contan, Richard Torkar
Abstract:
Aim: The process of test automation and its practices in industry have to be better understood, both for the industry itself and for the research community. Method: We conducted a quantitative industry survey by asking IT professionals to answer questions related to the area of test automation. Results: Test automation needs and practices vary greatly between organizations at different stages of the software development life cycle. Conclusions: Most of the findings are general test automation challenges and are specific to small- to medium-sized companies, developing software applications in the web, desktop or mobile domain.Keywords: survey, testing, test automation, status of test automation
Procedia PDF Downloads 65818526 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 15318525 Arbuscular Mycorrhizal Symbiosis in Trema orientalis: Effect of a Naturally-Occurring Symbiosis Receptor Kinase Mutant Allele
Authors: Yuda Purwana Roswanjaya, Wouter Kohlen, Rene Geurts
Abstract:
The Trema genus represents a group of fast-growing tropical tree species within the Cannabaceae. Interestingly, five species nested in this lineage -known as Parasponia- can establish rhizobium nitrogen-fixing root nodules, similar to those found in legumes. Parasponia and legumes use a conserved genetic network to control root nodule formation, among which are genes also essential for mycorrhizal symbiosis (the so-called common symbiotic pathway). However, Trema species lost several genes that function exclusively in nodulation, suggesting a loss-of the nodulation trait in Trema. Strikingly, in a Trema orientalis population found in Malaysian Borneo we identified a truncated SYMBIOSIS RECEPTOR KINASE (SYMRK) mutant allele lacking a large portion of the c-terminal kinase domain. In legumes this gene is essential for nodulation and mycorrhization. This raises the question whether Trema orientalis can still be mycorrhized. To answer this question, we established quantitative mycorrhization assay for Parasponia andersonii and Trema orientalis. Plants were grown in closed pots on half strength Hoagland medium containing 20 µM potassium phosphate in sterilized sand and inoculated with 125 spores of Rhizopagus irregularis (Agronutrion-DAOM197198). Mycorrhization efficiency was determined by analyzing the frequency of mycorrhiza (%F), the intensity of the mycorrhizal colonization (%M) and the arbuscule abundance (%A) in the root system. Trema orientalis RG33 can be mycorrhized, though with lower efficiency compared to Parasponia andersonii. From this we conclude that a functional SYMRK kinase domain is not essential for Trema orientalis mycorrhization. In ongoing experiments, we aim to investigate the role of SYMRK in Parasponia andersonii mycorrhization and nodulation. For this two Parasponia andersonii symrk CRISPR-Cas9 mutant alleles were created. One mimicking the TorSYMRKRG33 allele by deletion of exon 13-15, and a full Parasponia andersonii SYMRK knockout.Keywords: endomycorrhization, Parasponia andersonii, symbiosis receptor kinase (SYMRK), Trema orientalis
Procedia PDF Downloads 16318524 Merging of Results in Distributed Information Retrieval Systems
Authors: Larbi Guezouli, Imane Azzouz
Abstract:
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.Keywords: information retrieval, distributed IR systems, merging results, datamining
Procedia PDF Downloads 33618523 Assessment of Quality of Life in Hypertensive Patients Using the WHOQOL-BREF Instrument in Post-pandemic Era: An Analytical Cross-Sectional Study
Authors: Nasrin Akter, Bilkis Banu, Farhana Faruque, Fatema Afrin, Sujana Haque Chowdhury, Sarder Mahmud Hossain
Abstract:
Objectives: To combat the growing prevalence of hypertension in Bangladesh, it is pivotal to have an in-depth understanding of quality of life (QOL) among hypertensive people. The aim of this study was to measure QOL of hypertensive people and its determinants in a selected tertiary hospital in Dhaka city. Design & Methods: This analytical cross-sectional study was conducted among randomly selected 300 hypertensive patients from two cardiac departments of Square Hospitals Limited. Data were collected through the face-to-face interview method. WHOQOL-BREF questionnaire was used to assess the QOL. Mean scores of quality of life were analyzed through descriptive statistics. Cronbach’s alpha coefficient and Pearson’s correlation coefficient were applied to estimate the internal consistency, and the level of agreement among different domains of WHOQOL-BREF, respectively. Chi-square test followed by binary regression analyses were used to measure the association between QOL domains and independent variables. Results: Both overall QOL and domains had a good internal consistency, (r = 0.13–0.77, p< 0.01). The QOL among hypertensive patients was found to be poor in the psychological (71%) and social (74.7%) domains and good in the environmental (63%) and physical (65%) domains. Backward binary regressions revealed that being older (p=0.01), diabetic (p=0.02), having history of COVID-19 (p=0.01), and poor monthly income (USD ≤853.14) (p=0.01) were significantly associated with poor QOL in all domain. Moreover, older age (p=0.01) and poor lifestyle (p=0.02) were significantly associated with poor overall quality of life and poor general health perception. Conclusion: The results revealed low QOL in the psychological and social domain including significant factors associated with the poor QOL in all domains. To enhance the quality of life for hypertensive patients—especially those who are older, diabetic, have lower incomes, experienced COVID-19, and maintain poor lifestyles—effective interventions and health system strengthening are crucial.Keywords: quality of life, hypertension, WHOQOL-BREF, analytical cross-sectional study
Procedia PDF Downloads 1418522 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management
Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities
Procedia PDF Downloads 72