Search results for: radial basis function networks
10049 Studies on Some Aspects of Sub Clinical Mastitis in Cattle
Authors: Kavita Jaidiya, Anju Chahar, Chitra Jaidiya
Abstract:
The present study was conducted on 200 quarters from 50 apparently healthy cows. Samples are subjected to California Mastitis Test (CMT), cultural examination, and mPCR. Milk samples were also subjected to changes in composition Viz. fat, protein, and lactose. The prevalence of subclinical mastitis based on culture examination was 30(60/200), 36 (72/200), and 40 percent (93/200) based on CMT, culture examination, and mPCR on a quarterly basis. The prevalence of subclinical mastitis on animal basis was 40 (20/50), 46 (23/50), and 52 percent (26/50) based on CMT, Culture examination, and mPCR. The highest prevalence was observed in IVth parity on a quarterly basis and in Vth parity on cow basis. On culture examination, Staphylococcus aureus was the most prevalent organism (50.56%), followed by Streptococcus dysaglactiae (11.33%), E. coli (7.8 %), Staphylococcus agalactiae (13.48 %), Staphylococcus epidermidis (2.2 %), Streptococcus hyicus (6.94%), Streptococcus uberis (5.16%), Klebsiella pneumonia (6.74%). On isolation by bacterial mPCR, Staphylococcus spp. (42%) was the major pathogen. Organisms isolated in mixed infections are Streptococcus spp., Klebsiella pneumonia, E.coli and Pseudomonas aeruginous. The average mean value of fat, protein, and lactose content in subclinically affected milk samples were 3.40 ± 0.101, 3.009 ± 0.033, and 4.48 ± 0.03, and the mean value of fat, protein, and lactose content in normal milk were 4.13 ± 0.035, 3.39 ± 0.021, and 5.10 ± 0.016. The mean blood level of reduced glutathione in subclinical mastitis (30.44 ± 1.87 ng/ml) was lower than healthy cows (47.98 ± 4.04ng/ml). The concentration of malondialdehyde (10.026 ± 0.21mmol/L) in subclinical mastitis was significantly higher as compared to healthy group cows (2.19 ± 0.23mmol/L).Keywords: cow, subclinical mastitis, mPCR, California Mastitis test
Procedia PDF Downloads 14910048 Internet Protocol Television: A Research Study of Undergraduate Students Analyze the Effects
Authors: Sabri Serkan Gulluoglu
Abstract:
The study is aimed at examining the effects of internet marketing with IPTV on human beings. Internet marketing with IPTV is emerging as an integral part of business strategies in today’s technologically advanced world and the business activities all over the world are influences with the emergence of this modern marketing tool. As the population of the Internet and on-line users’ increases, new research issues have arisen concerning the demographics and psychographics of the on-line user and the opportunities for a product or service. In recent years, we have seen a tendency of various services converging to the ubiquitous Internet Protocol based networks. Besides traditional Internet applications such as web browsing, email, file transferring, and so forth, new applications have been developed to replace old communication networks. IPTV is one of the solutions. In the future, we expect a single network, the IP network, to provide services that have been carried by different networks today. For finding some important effects of a video based technology market web site on internet, we determine to apply a questionnaire on university students. Recently some researches shows that in Turkey the age of people 20 to 24 use internet when they buy some electronic devices such as cell phones, computers, etc. In questionnaire there are ten categorized questions to evaluate the effects of IPTV when shopping. There were selected 30 students who are filling the question form after watching an IPTV channel video for 10 minutes. This sample IPTV channel is “buy.com”, it look like an e-commerce site with an integrated IPTV channel on. The questionnaire for the survey is constructed by using the Likert scale that is a bipolar scaling method used to measure either positive or negative response to a statement (Likert, R) it is a common system that is used is the surveys. By following the Likert Scale “the respondents are asked to indicate their degree of agreement with the statement or any kind of subjective or objective evaluation of the statement. Traditionally a five-point scale is used under this methodology”. For this study also the five point scale system is used and the respondents were asked to express their opinions about the given statement by picking the answer from the given 5 options: “Strongly disagree, Disagree, Neither agree Nor disagree, Agree and Strongly agree”. These points were also rates from 1-5 (Strongly disagree, Disagree, Neither disagree Nor agree, Agree, Strongly agree). On the basis of the data gathered from the questionnaire some results are drawn in order to get the figures and graphical representation of the study results that can demonstrate the outcomes of the research clearly.Keywords: IPTV, internet marketing, online, e-commerce, video based technology
Procedia PDF Downloads 24010047 Towards a Smart Irrigation System Based on Wireless Sensor Networks
Authors: Loubna Hamami, Bouchaib Nassereddine
Abstract:
Due to the evolution of technologies, the need to observe and manage hostile environments, and reduction in size, wireless sensor networks (WSNs) are becoming essential and implicated in the most fields of life. WSNs enable us to change the style of living, working and interacting with the physical environment. The agricultural sector is one of such sectors where WSNs are successfully used to get various benefits. For successful agricultural production, the irrigation system is one of the most important factors, and it plays a tactical role in the process of agriculture domain. However, it is considered as the largest consumer of freshwater. Besides, the scarcity of water, the drought, the waste of the limited available water resources are among the critical issues that touch the almost sectors, notably agricultural services. These facts are leading all governments around the world to rethink about saving water and reducing the volume of water used; this requires the development of irrigation practices in order to have a complete and independent system that is more efficient in the management of irrigation. Consequently, the selection of WSNs in irrigation system has been a benefit for developing the agriculture sector. In this work, we propose a prototype for a complete and intelligent irrigation system based on wireless sensor networks and we present and discuss the design of this prototype. This latter aims at saving water, energy and time. The proposed prototype controls water system for irrigation by monitoring the soil temperature, soil moisture and weather conditions for estimation of water requirements of each plant.Keywords: precision irrigation, sensor, wireless sensor networks, water resources
Procedia PDF Downloads 15310046 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 7510045 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 14310044 Cognitive Semantics Study of Conceptual and Metonymical Expressions in Johnson's Speeches about COVID-19
Authors: Hussain Hameed Mayuuf
Abstract:
The study is an attempt to investigate the conceptual metonymies is used in political discourse about COVID-19. Thus, this study tries to analyze and investigate how the conceptual metonymies in Johnson's speech about coronavirus are constructed. This study aims at: Identifying how are metonymies relevant to understand the messages in Boris Johnson speeches and to find out how can conceptual blending theory help people to understand the messages in the political speech about COVID-19. Lastly, it tries to Point out the kinds of integration networks are common in political speech. The study is based on the hypotheses that conceptual blending theory is a powerful tool for investigating the intended messages in Johnson's speech and there are different processes of blending networks and conceptual mapping that enable the listeners to identify the messages in political speech. This study presents a qualitative and quantitative analysis of four speeches about COVID-19; they are said by Boris Johnson. The selected data have been tackled from the cognitive-semantic perspective by adopting Conceptual Blending Theory as a model for the analysis. It concludes that CBT is applicable to the analysis of metonymies in political discourse. Its mechanisms enable listeners to analyze and understand these speeches. Also the listener can identify and understand the hidden messages in Biden and Johnson's discourse about COVID-19 by using different conceptual networks. Finally, it is concluded that the double scope networks are the most common types of blending of metonymies in the political speech.Keywords: cognitive, semantics, conceptual, metonymical, Covid-19
Procedia PDF Downloads 12810043 Measurement and Analysis of Building Penetration Loss for Mobile Networks in Tripoli Area
Authors: Tammam A. Benmusa, Mohamed A. Shlibek, Rawad M. Swesi
Abstract:
The investigation of Buildings Penetration Loss (BPL) of radio signal is getting more and more important. It plays an important role in calculating the indoor coverage for wireless communication networks. In this paper, the theory behind BPL and its mechanisms have been reviewed. The operating frequency, coverage area type, climate condition, time of measurement, and other factors affecting the values of BPL have been discussed. The practical part of this work was conducting 4000 measurements of BPL in different areas in the Libyan capital, Tripoli, to get empirical model for this loss. The measurements were taken for 2 different types of wireless communication networks; mobile telephone network (for Almadar company), which operates at 900 MHz and WiMAX network (LTT company) which operates at 2500 MHz. The results for each network were summarized and presented in several graphs. The graphs are showing how the BPL affected by: time of measurement, morphology (type of area), and climatic environment.Keywords: building penetration loss, wireless network, mobile network, link budget, indoor network performance
Procedia PDF Downloads 38410042 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 9010041 Prediction of Unsaturated Permeability Functions for Clayey Soil
Authors: F. Louati, H. Trabelsi, M. Jamei
Abstract:
Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation
Procedia PDF Downloads 29910040 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence
Authors: Yasser Rammah, Wolf-Christian Mueller
Abstract:
Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)
Procedia PDF Downloads 38510039 Velocity Logs Error Reduction for In-Service Calibration of Vessel Performance Indicators
Authors: Maria Tsompanoglou, Dimitris Armenis
Abstract:
Vessel behavior in different operational and weather conditions constitutes the main area of interest for the ship operator. Ship speed and fuel consumption are the most decisive parameters in this respect, as their correlation provides information about the economic and environmental efficiency of the vessel, becoming the basis of decision making in terms of maintenance and trading. In the analysis of vessel operational profile for the evaluation of fuel consumption and the equivalent CO2 emissions footprint, the indications of Speed Through Water are widely used. The seasonal and regional variations in seawater characteristics, which are available nowadays, can provide the basis for accurate estimation of the errors in Speed Through Water indications at any time. Accuracy in the speed value on a route basis can enable operator identify the ship fuel and propulsion efficiency and proceed with improvements. This paper discusses case studies, where the actual vessel speed was corrected by a post-processing algorithm. The effects of the vessel correction to standard Key Performance Indicators, as well as operational findings not identified earlier, are also discussed.Keywords: data analytics, MATLAB, vessel performance monitoring, speed through water
Procedia PDF Downloads 30010038 Molecular Dynamics Studies of Main Factors Affecting Mass Transport Phenomena on Cathode of Polymer Electrolyte Membrane Fuel Cell
Authors: Jingjing Huang, Nengwei Li, Guanghua Wei, Jiabin You, Chao Wang, Junliang Zhang
Abstract:
In this work, molecular dynamics (MD) simulation is applied to analyze the mass transport process in the cathode of proton exchange membrane fuel cell (PEMFC), of which all types of molecules situated in the cathode is considered. a reasonable and effective MD simulation process is provided, and models were built and compared using both Materials Studio and LAMMPS. The mass transport is one of the key issues in the study of proton exchange membrane fuel cells (PEMFCs). In this report, molecular dynamics (MD) simulation is applied to analyze the influence of Nafion ionomer distribution and Pt nano-particle size on mass transport process in the cathode. It is indicated by the diffusion coefficients calculation that a larger quantity of Nafion, as well as a higher equivalent weight (EW) value, will hinder the transport of oxygen. In addition, medium-sized Pt nano-particles (1.5~2nm) are more advantageous in terms of proton transport compared with other particle sizes (0.94~2.55nm) when the center-to-center distance between two Pt nano-particles is around 5 nm. Then mass transport channels are found to be formed between the hydrophobic backbone and the hydrophilic side chains of Nafion ionomer according to the radial distribution function (RDF) curves. And the morphology of these channels affected by the Pt size is believed to influence the transport of hydronium ions and, consequently the performance of PEMFC.Keywords: cathode catalytic layer, mass transport, molecular dynamics, proton exchange membrane fuel cell
Procedia PDF Downloads 24310037 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography
Authors: Merad Boudia Omar Rafik, Feham Mohammed
Abstract:
Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysisKeywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption
Procedia PDF Downloads 29710036 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime
Procedia PDF Downloads 30910035 Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors
Authors: Shyam, G. N. Tiwari
Abstract:
Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001.Keywords: overall thermal energy, exergy, energy payback time, PVT water collectors
Procedia PDF Downloads 37410034 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks
Authors: Deepa Das, Susmita Das
Abstract:
Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO
Procedia PDF Downloads 46710033 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 16210032 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk
Authors: Yilin Liao, Hewen Li, Paula McConvey
Abstract:
Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.Keywords: artificial neural networks, concussion, machine learning, impact, speed skater
Procedia PDF Downloads 10910031 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm
Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri
Abstract:
Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering
Procedia PDF Downloads 10310030 The Predictive Implication of Executive Function and Language in Theory of Mind Development in Preschool Age Children
Authors: Michael Luc Andre, Célia Maintenant
Abstract:
Theory of mind is a milestone in child development which allows children to understand that others could have different mental states than theirs. Understanding the developmental stages of theory of mind in children leaded researchers on two Connected research problems. In one hand, the link between executive function and theory of mind, and on the other hand, the relationship of theory of mind and syntax processing. These two lines of research involved a great literature, full of important results, despite certain level of disagreement between researchers. For a long time, these two research perspectives continue to grow up separately despite research conclusion suggesting that the three variables should implicate same developmental period. Indeed, our goal was to study the relation between theory of mind, executive function, and language via a unique research question. It supposed that between executive function and language, one of the two variables could play a critical role in the relationship between theory of mind and the other variable. Thus, 112 children aged between three and six years old were recruited for completing a receptive and an expressive vocabulary task, a syntax understanding task, a theory of mind task, and three executive function tasks (inhibition, cognitive flexibility and working memory). The results showed significant correlations between performance on theory of mind task and performance on executive function domain tasks, except for cognitive flexibility task. We also found significant correlations between success on theory of mind task and performance in all language tasks. Multiple regression analysis justified only syntax and general abilities of language as possible predictors of theory of mind performance in our preschool age children sample. The results were discussed in the perspective of a great role of language abilities in theory of mind development. We also discussed possible reasons that could explain the non-significance of executive domains in predicting theory of mind performance, and the meaning of our results for the literature.Keywords: child development, executive function, general language, syntax, theory of mind
Procedia PDF Downloads 6410029 A New Reliability based Channel Allocation Model in Mobile Networks
Authors: Anujendra, Parag Kumar Guha Thakurta
Abstract:
The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.Keywords: base station, channel, GA, pareto-optimal, reliability
Procedia PDF Downloads 40810028 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 50910027 A Molecular-Level Study of Combining the Waste Polymer and High-Concentration Waste Cooking Oil as an Additive on Reclamation of Aged Asphalt Pavement
Authors: Qiuhao Chang, Liangliang Huang, Xingru Wu
Abstract:
In the United States, over 90% of the roads are paved with asphalt. The aging of asphalt is the most serious problem that causes the deterioration of asphalt pavement. Waste cooking oils (WCOs) have been found they can restore the properties of aged asphalt and promote the reuse of aged asphalt pavement. In our previous study, it was found the optimal WCO concentration to restore the aged asphalt sample should be in the range of 10~15 wt% of the aged asphalt sample. After the WCO concentration exceeds 15 wt%, as the WCO concentration increases, some important properties of the asphalt sample can be weakened by the addition of WCO, such as cohesion energy density, surface free energy density, bulk modulus, shear modulus, etc. However, maximizing the utilization of WCO can create environmental and economic benefits. Therefore, in this study, a new idea about using the waste polymer is another additive to restore the WCO modified asphalt that contains a high concentration of WCO (15-25 wt%) is proposed, which has never been reported before. In this way, both waste polymer and WCO can be utilized. The molecular dynamics simulation is used to study the effect of waste polymer on properties of WCO modified asphalt and understand the corresponding mechanism at the molecular level. The radial distribution function, self-diffusion, cohesion energy density, surface free energy density, bulk modulus, shear modulus, adhesion energy between asphalt and aggregate are analyzed to validate the feasibility of combining the waste polymer and WCO to restore the aged asphalt. Finally, the optimal concentration of waste polymer and WCO are determined.Keywords: reclaim aged asphalt pavement, waste cooking oil, waste polymer, molecular dynamics simulation
Procedia PDF Downloads 22010026 Jensen's Inequality and M-Convex Functions
Authors: Yamin Sayyari
Abstract:
In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.Keywords: Jensen's inequality, m-convex function, Convex function, Inequality
Procedia PDF Downloads 14410025 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3210024 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs
Procedia PDF Downloads 35810023 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 39510022 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 8010021 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 49210020 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka
Authors: Paulu Saramge Shalika Nirupani Seram
Abstract:
The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.Keywords: agricultural extension, paddy cultivation, social network, technology adoption
Procedia PDF Downloads 65