Search results for: pedestrian walking speed
2530 An Autopilot System for Static Zone Detection
Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo
Abstract:
Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement
Procedia PDF Downloads 1012529 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 6272528 Formulation of Optimal Shifting Sequence for Multi-Speed Automatic Transmission
Authors: Sireesha Tamada, Debraj Bhattacharjee, Pranab K. Dan, Prabha Bhola
Abstract:
The most important component in an automotive transmission system is the gearbox which controls the speed of the vehicle. In an automatic transmission, the right positioning of actuators ensures efficient transmission mechanism embodiment, wherein the challenge lies in formulating the number of actuators associated with modelling a gearbox. Data with respect to actuation and gear shifting sequence has been retrieved from the available literature, including patent documents, and has been used in this proposed heuristics based methodology for modelling actuation sequence in a gear box. This paper presents a methodological approach in designing a gearbox for the purpose of obtaining an optimal shifting sequence. The computational model considers factors namely, the number of stages and gear teeth as input parameters since these two are the determinants of the gear ratios in an epicyclic gear train. The proposed transmission schematic or stick diagram aids in developing the gearbox layout design. The number of iterations and development time required to design a gearbox layout is reduced by using this approach.Keywords: automatic transmission, gear-shifting, multi-stage planetary gearbox, rank ordered clustering
Procedia PDF Downloads 3252527 Multiple Winding Multiphase Motor for Electric Drive System
Authors: Zhao Tianxu, Cui Shumei
Abstract:
This paper proposes a novel multiphase motor structure. The armature winding consists of several independent multiphase windings that have different rating rotate speed and power. Compared to conventional motor, the novel motor structure has more operation mode and fault tolerance mode, which makes it adapt to high-reliability requirement situation such as electric vehicle, aircraft and ship. Performance of novel motor structure varies with winding match. In order to find optimum control strategy, motor torque character, efficiency performance and fault tolerance ability under different operation mode are analyzed in this paper, and torque distribution strategy for efficiency optimization is proposed. Simulation analyze is taken and the result shows that proposed structure has the same efficiency on heavy load and higher efficiency on light load operation points, which expands high efficiency area of motor and cruise range of vehicle. The proposed structure can improve motor highest speed.Keywords: multiphase motor, armature winding match, torque distribution strategy, efficiency
Procedia PDF Downloads 3602526 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation
Authors: Minho Kwak, Suhwan Yun, Choonsoo Park
Abstract:
Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape
Procedia PDF Downloads 3472525 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 1172524 Experimental Investigation on Sustainable Machining of Hastelloy C-276 Utilizing Different Cooling Strategies
Authors: Balkar Singh, Gurpreet Singh, Vivek Aggarwal, Sehijpal Singh
Abstract:
The present research focused to improve the machinability of Hastelloy C-276 at different machining speeds such as 31, 55, and 79 m/min. The use of CO2 gas and Minimum quantity lubrication (MQL) was applied as coolant and lubrication purposes to enhance the machinability of the superalloy. The output in the form of surface roughness (S.R) and heat generation was monitored under dry, MQL, and MQL-CO2-cooled conditions. The Design of the Experiment was prepared using MINITAB software utilizing Taguchi L-27 orthogonal arrays followed by ANOVA analysis for finding the impact of input variables on output responses. At different speeds and lubrication conditions, different behavioral patterns for Surface Roughness and the temperature was observed. ANOVA analysis depicted that the cooling environment impacted the S.R. majorly (50%) followed by cutting speed (29.84%), feed rate (5.09%), and least through depth of cut (4.95%). On the other side, the temperature was greatly influenced by cutting speed (69.12%), Cryo-MQL (8.09%), feed rate (7.59%), and depth of cut (6.20%). Experimental results revealed that Cryo-MQL cooling enhanced the Surface roughness by 12% compared to MQL condition.Keywords: Hastelloy C-276, minimum quantity lubrication, olive oil, cryogenic Cooling (CO2)
Procedia PDF Downloads 1422523 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations
Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim
Abstract:
A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.Keywords: gerotor pump, high speed, numerical simulations, aeronautic, aeration, cavitation
Procedia PDF Downloads 1332522 Investigation on the Performance of Biodiesel and Natural Gas-Fuelled Diesel Engines for Shipboard Application
Authors: Kelvin Datonye Bob-Manuel
Abstract:
The shipping industry has begun to seriously look at ways of reducing fossil fuel consumption so that current reserves can last longer and operate their ships in a more environmentally friendly way. The concept of Green Shipping or Sustainable Shipping with the use of alternative fuels is now becoming an important issue for ship owners, shipping lines and ship builders globally. This paper provides a critical review of the performance of biodiesel and natural gas-fuelled diesel engines for shipboard application. The emission reduction technique included the use of either neat or emulsified rapeseed methyl ester (RME) for pilot ignition and the emission of NOx, CO2 and SOx were measured at engine speed range of 500 - 1500 r/min. The NOx concentrations were compared with the regulated IMO MARPOL73/78, Annex VI, Tiers I, II, III and United States Environmental Protection Agency (US-EPA) standard. All NOx emissions met Tier I and II levels and the EPA standard for the minimum specification of category 1 engines at higher speed but none met the MARPOL Tier III limit which is for designated Emission Control Areas (ECAs). No trace of soot and SOx emission were observed.Keywords: dual-fuel, biodiesel, natural gas, NOx, SOx, MARPOL 73/78 Annex VI. USEPA Tier 3, EURO V &VI
Procedia PDF Downloads 4172521 Use of Socially Assistive Robots in Early Rehabilitation to Promote Mobility for Infants with Motor Delays
Authors: Elena Kokkoni, Prasanna Kannappan, Ashkan Zehfroosh, Effrosyni Mavroudi, Kristina Strother-Garcia, James C. Galloway, Jeffrey Heinz, Rene Vidal, Herbert G. Tanner
Abstract:
Early immobility affects the motor, cognitive, and social development. Current pediatric rehabilitation lacks the technology that will provide the dosage needed to promote mobility for young children at risk. The addition of socially assistive robots in early interventions may help increase the mobility dosage. The aim of this study is to examine the feasibility of an early intervention paradigm where non-walking infants experience independent mobility while socially interacting with robots. A dynamic environment is developed where both the child and the robot interact and learn from each other. The environment involves: 1) a range of physical activities that are goal-oriented, age-appropriate, and ability-matched for the child to perform, 2) the automatic functions that perceive the child’s actions through novel activity recognition algorithms, and decide appropriate actions for the robot, and 3) a networked visual data acquisition system that enables real-time assessment and provides the means to connect child behavior with robot decision-making in real-time. The environment was tested by bringing a two-year old boy with Down syndrome for eight sessions. The child presented delays throughout his motor development with the current being on the acquisition of walking. During the sessions, the child performed physical activities that required complex motor actions (e.g. climbing an inclined platform and/or staircase). During these activities, a (wheeled or humanoid) robot was either performing the action or was at its end point 'signaling' for interaction. From these sessions, information was gathered to develop algorithms to automate the perception of activities which the robot bases its actions on. A Markov Decision Process (MDP) is used to model the intentions of the child. A 'smoothing' technique is used to help identify the model’s parameters which are a critical step when dealing with small data sets such in this paradigm. The child engaged in all activities and socially interacted with the robot across sessions. With time, the child’s mobility was increased, and the frequency and duration of complex and independent motor actions were also increased (e.g. taking independent steps). Simulation results on the combination of the MDP and smoothing support the use of this model in human-robot interaction. Smoothing facilitates learning MDP parameters from small data sets. This paradigm is feasible and provides an insight on how social interaction may elicit mobility actions suggesting a new early intervention paradigm for very young children with motor disabilities. Acknowledgment: This work has been supported by NIH under grant #5R01HD87133.Keywords: activity recognition, human-robot interaction, machine learning, pediatric rehabilitation
Procedia PDF Downloads 2922520 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment
Authors: C. Temaneh-Nyah
Abstract:
Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network
Procedia PDF Downloads 2182519 Effect of Seed Treatment on Seed Quality and Storability in Wheat (Triticum Aestivum L.) in Northwestern Himalayas
Authors: Anubhav Thakur, Karam Chand Dhiman
Abstract:
Storage experiment was conducted to study the effect of polymer, fungicides and insecticide on seed quality parameters and storability in wheat. The experimental material consisted of carry over wheat seeds (variety HPW- 155) of rabi 2017 - 18. The observations were recorded bimonthly on parameters viz; germination (%), seedling length (cm), dry weight (g), vigour index - I, vigour - II, speed of germination, field emergence (%), 100 seed weight (g) for 12 months of storage. All parameters declined with the advancement in storage period. The results showed that seeds treated with polymer + vitavax 200 @ 2 g/kg of seed recorded higher germination percentage (95.00 %), seedling length (17.58 cm), seedling dry weight (0.0138 g), vigour index - I (1670) & vigour - II (1.311), speed of germination (19.98), 100 seed weight (5.54 g) and field emergence (87.33 %) which was at par with vitavax 200 @ 2 g/kg of seed, over untreated control (T1). So it can be concluded that for maintain seed quality and enhancing storability, seed of wheat can either be treated with polymer @ 3 ml/kg of seed + vitavax 200 @ 2 g/kg of seed or vitavax 200 @ 2 g/kg of seed.Keywords: wheat, seed treatment, storability, seed quality
Procedia PDF Downloads 1722518 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library
Authors: Donggun Lee, Q-Han Park
Abstract:
Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization
Procedia PDF Downloads 1482517 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 3302516 Optimal Path Motion of Positional Electric Drive
Authors: M. A. Grigoryev, A. N. Shishkov, N. V. Savosteenko
Abstract:
The article identifies optimal path motion of positional electric drive, for example, the feed of cold pilgering mill. It is shown that triangle is the optimum shape of the speed curve, and the ratio of its sides depends on the type of load diagram, in particular from the influence of the main drive of pilgering mill, and is not dependent on the presence of backlash and elasticity in the system. This thesis is proved analytically, and confirmed the results are obtained by a mathematical model that take into account the influence of the main drive-to-drive feed. By statistical analysis of oscillograph traces obtained on the real object allowed to give recommendations on the optimal control of the electric drive feed cold pilgering mill 450. Based on the data that the load torque depends on by hit the pipe in rolls of pilgering mill, occurs in the interval (0,6…0,75) tc, the recommended ratio of start time to the braking time is 2:1. Optimized path motion allowed get up to 25% more RMS torque for the cycle that allowed increased the productivity of the mill.Keywords: optimal curve speed, positional electric drive, cold pilgering mill 450, optimal path motion
Procedia PDF Downloads 3182515 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V
Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair
Abstract:
Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.Keywords: additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V)
Procedia PDF Downloads 2832514 Management in the Transport of Pigs to Slaughterhouses in the Valle De Aburrá, Antioquia
Authors: Natalia Uribe Corrales, María Fernanda Benavides Erazo, Santiago Henao Villegas
Abstract:
Introduction: Transport is a crucial link in the porcine chain because it is considered a stressful event in the animal, due to it is a new environment, which generates new interactions, together with factors such as speed, noise, temperature changes, vibrations, deprivation of food and water. Therefore, inadequate handling at this stage can lead to bruises, musculoskeletal injuries, fatigue, and mortality, resulting in canal seizures and economic losses. Objective: To characterize the transport and driving practices for the mobilization of standing pigs directed to slaughter plants in the Valle de Aburrá, Antioquia, Colombia in 2017. Methods: A descriptive cross-sectional study was carried out with the transporters arriving at the slaughterhouses approved by National Institute for Food and Medicine Surveillance (INVIMA) during 2017 in the Valle de Aburrá. The process of obtaining the samples was made from probabilistic sampling. Variables such as journey time, mechanical technical certificate, training in animal welfare, driving speed, material, and condition of floors and separators, supervision of animals during the trip, load density and mortality were analyzed. It was approved by the ethics committee for the use and care of animals CICUA of CES University, Act number 14 of 2015. Results: 190 trucks were analyzed, finding that 12.4% did not have updated mechanical technical certificate; the transporters experience in pig’s transportation was an average of 9.4 years (d.e.7.5). The 85.8% reported not having received training in animal welfare. Other results were that the average speed was 63.04km/hr (d.e 13.46) and the 62% had floors in good condition; nevertheless, the 48% had bad conditions on separators. On the other hand, the 88% did not supervise their animals during the journey, although the 62.2% had an adequate loading density, in relation to the average mortality was 0.2 deaths/travel (d.e. 0.5). Conclusions: Trainers should be encouraged on issues such as proper maintenance of vehicles, animal welfare, obligatory review of animals during mobilization and speed of driving, as these poorly managed indicators generate stress in animals, increasing generation of injuries as well as possible accidents; also, it is necessary to continue to improve aspects such as aluminum floors and separators that favor easy cleaning and maintenance, as well as the appropriate handling in the density of load that generates animal welfare.Keywords: animal welfare, driving practices, pigs, truck infrastructure
Procedia PDF Downloads 2082513 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices
Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim
Abstract:
In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer
Procedia PDF Downloads 3332512 Design of Process Parameters in Electromagnetic Forming Apparatus by FEM
Authors: Hyeong-Gyu Park, Hak-Gon Noh, Beom-Soo Kang, Jeong Kim
Abstract:
Electromagnetic forming (EMF) process is one of a high-speed forming process, which uses an electromagnetic body (Lorentz) force to deform work-piece. Advantages of EMF are summarized as improvement of formability, reduction in wrinkling, non-contact forming. In this study, the spiral coil is considered to evaluate formability in terms of pressure distribution of the forming process. It also is represented forming results of numerical analysis using ANSYS code. In the numerical simulation, RLC circuit coupled with spiral coil was made to consider the design parameters such as system input current and electromagnetic force. The simulation results show that even though input peak currents level are same level in each case, forming condition is certainly different because of frequency of input current and magnitude of current density and magnetic flux density. Finally, the simulation results appear that electromagnetic forming force apparently affected by input current frequency which determines magnitude of current density and magnetic flux density.Keywords: electromagnetic forming, high-speed forming, RLC circuit, Lorentz force
Procedia PDF Downloads 4552511 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling
Procedia PDF Downloads 872510 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and bio-sensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434. In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: flow length, micro cantilevers, micro injection moulding, microfabrication
Procedia PDF Downloads 3952509 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization
Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen
Abstract:
This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization
Procedia PDF Downloads 2482508 Fear of Falling and Subjective Cognitive Decline Are Predictors of Fall Risk in Community-dwelling Older Adults Living in Low-income Settings
Authors: Ladda Thiamwong, Renata Komalasari
Abstract:
Falls are the leading cause of disability and hospitalization in low-income older adults. Fear of falling is present in 20% to 85 % of older adults and has been identified as an independent risk factor of fall risk, activity restriction, and loss of independence. About 12% of American older adults have subjective cognitive decline. Cognitive impairment is also an established factor of fall risk. However, it is unclear whether measures of fear of falling and subjective cognitive decline have the greatest association with fall risk in low-income older adults. The aim of this study was to evaluate the association between fear of falling, subjective cognitive decline-functional performance (SCD-FP), and fall risk using simple screening tools. In this cross-section study, we collected data from community-dwelling older adults 60 years or older in low-income settings in Central Florida, and 86 participants were included in the data analysis. Fear of falling was assessed by the Short Fall Efficacy Scale- International (Short FES-I) with seven items. Subjective cognitive decline-functional performance (SCD-FP) was assessed by a self-reported experience of worsening or more frequent confusion or memory loss in the past 12 months and its functional implications. Fall risk was evaluated by the Centers for Disease Control and Prevention (CDC)'s Stay Independent checklist with 12 items. The majority of participants were female, and more than half of the participants were African American. More than half of the participants had a higher school degree or higher, and less than 20% had no financial problems. Less than 30% of the participants perceived their general health as very good- excellent. More than half of the participants lived alone, and less than 15% lived with a partner or spouse. About 60% of the participants had hypertension, 40% had diabetes, 16% had cancer, and 50% had arthritis. About 30% of the participants had difficulty walking up ten steps without resting, more than 40% felt unsteady when walking, and 30% had been advised to use a cane or walker to get around safely. Regression analysis showed that fall risk was associated with fear of falling ( = .524, p <.001) and subjective cognitive decline-functional performance ( = .465, p =.027). The structure coefficient showed that fear of falling (rs2 = .922) was a stronger predictor of fall risk than subjective cognitive decline-functional performance (rs2= .200). Fear of falling and subjective cognitive decline-functional performance are growing public health issues, and addressing those issues is a public priority. Proactive screening for fear of falling and subjective cognitive decline-functional performance is critical in fall prevention. A combination of all three self-reported tools (Short FES-I, SCD-FP, and CDC's Stay Independent checklist) takes less than 5 minutes to complete. Primary care providers or public health professionals should consider including these tools to screen fear of falling and subjective cognitive decline-functional performance as part of fall risk assessment, especially in low-income settings. Thus, encouraging older adults and healthcare professionals to discuss fear of falling, subjective cognitive decline, and fall risk during routine medical office visits.Keywords: falls, fall risk, fear of falling, cognition, subjective cognitive decline, low-income, older adults, community, screening, nursing, primary care
Procedia PDF Downloads 742507 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 3082506 Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure
Authors: Tianyi Wang, Hieyong Jeong, An Guo, Yuko Ohno
Abstract:
Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author’s best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm.Keywords: center of pressure, fault classification, healthcare robot, sit-to-stand movement
Procedia PDF Downloads 1972505 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players
Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar
Abstract:
The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.Keywords: body composition, core training, physical fitness, volleyball
Procedia PDF Downloads 3462504 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances
Authors: Pakorn Uttayopas, Chawalit Kittichaikarn
Abstract:
This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel
Procedia PDF Downloads 2332503 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems
Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb
Abstract:
Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems
Procedia PDF Downloads 6112502 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle
Authors: Marulasiddappa H. B., Pushparajesh Viswanathan
Abstract:
Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.Keywords: direct torque control, electric vehicle, torque ripple, PMSM
Procedia PDF Downloads 1642501 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens
Authors: Amandeep Kaur, Sangeeta Sharma
Abstract:
Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead
Procedia PDF Downloads 87