Search results for: fuel upgrade
937 Hydrogen Purity: Developing Low-Level Sulphur Speciation Measurement Capability
Authors: Sam Bartlett, Thomas Bacquart, Arul Murugan, Abigail Morris
Abstract:
Fuel cell electric vehicles provide the potential to decarbonise road transport, create new economic opportunities, diversify national energy supply, and significantly reduce the environmental impacts of road transport. A potential issue, however, is that the catalyst used at the fuel cell cathode is susceptible to degradation by impurities, especially sulphur-containing compounds. A recent European Directive (2014/94/EU) stipulates that, from November 2017, all hydrogen provided to fuel cell vehicles in Europe must comply with the hydrogen purity specifications listed in ISO 14687-2; this includes reactive and toxic chemicals such as ammonia and total sulphur-containing compounds. This requirement poses great analytical challenges due to the instability of some of these compounds in calibration gas standards at relatively low amount fractions and the difficulty associated with undertaking measurements of groups of compounds rather than individual compounds. Without the available reference materials and analytical infrastructure, hydrogen refuelling stations will not be able to demonstrate compliance to the ISO 14687 specifications. The hydrogen purity laboratory at NPL provides world leading, accredited purity measurements to allow hydrogen refuelling stations to evidence compliance to ISO 14687. Utilising state-of-the-art methods that have been developed by NPL’s hydrogen purity laboratory, including a novel method for measuring total sulphur compounds at 4 nmol/mol and a hydrogen impurity enrichment device, we provide the capabilities necessary to achieve these goals. An overview of these capabilities will be given in this paper. As part of the EMPIR Hydrogen co-normative project ‘Metrology for sustainable hydrogen energy applications’, NPL are developing a validated analytical methodology for the measurement of speciated sulphur-containing compounds in hydrogen at low amount fractions pmol/mol to nmol/mol) to allow identification and measurement of individual sulphur-containing impurities in real samples of hydrogen (opposed to a ‘total sulphur’ measurement). This is achieved by producing a suite of stable gravimetrically-prepared primary reference gas standards containing low amount fractions of sulphur-containing compounds (hydrogen sulphide, carbonyl sulphide, carbon disulphide, 2-methyl-2-propanethiol and tetrahydrothiophene have been selected for use in this study) to be used in conjunction with novel dynamic dilution facilities to enable generation of pmol/mol to nmol/mol level gas mixtures (a dynamic method is required as compounds at these levels would be unstable in gas cylinder mixtures). Method development and optimisation are performed using gas chromatographic techniques assisted by cryo-trapping technologies and coupled with sulphur chemiluminescence detection to allow improved qualitative and quantitative analyses of sulphur-containing impurities in hydrogen. The paper will review the state-of-the art gas standard preparation techniques, including the use and testing of dynamic dilution technologies for reactive chemical components in hydrogen. Method development will also be presented highlighting the advances in the measurement of speciated sulphur compounds in hydrogen at low amount fractions.Keywords: gas chromatography, hydrogen purity, ISO 14687, sulphur chemiluminescence detector
Procedia PDF Downloads 224936 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth
Abstract:
Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR
Procedia PDF Downloads 177935 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 147934 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan
Authors: Sumra Siddique Abbasi, Cheng Shikun
Abstract:
Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.Keywords: biogas plant, animal dunk, renewable energy, pakistan
Procedia PDF Downloads 70933 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 621932 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service
Authors: Lai Wenfang
Abstract:
Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.Keywords: artificial intelligence, natural language processing, machine learning, visualization
Procedia PDF Downloads 172931 The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H.Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature, thickness, velocity, WC-12Co
Procedia PDF Downloads 400930 Nuclear Powered UAV for Surveillances and Aerial Photography
Authors: Rajasekar Elangopandian, Anand Shanmugam
Abstract:
Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line
Procedia PDF Downloads 408929 Teachers' and Learners' ICT-Readiness Assessment for Agricultural Science Instruction in Secondary Schools in Ogun State, Nigeria
Authors: A. Olusegun Egunjobi, Samson Sunday Adekunte
Abstract:
This study investigated the teachers’ and learners’ ICT-readiness assessment for agricultural science instruction in secondary schools in Ogun State, Nigeria. However, the sample population of 6 and 120 agricultural science teachers and learners were randomly selected respectively from 3 public and 3 private senior secondary schools in Ado-Odo/Ota Local Government Area of Ogun State, Nigeria. Descriptive survey design of ex post-facto type was adopted for the study. Two structured questionnaires tagged Teachers’ and Learners’ Questionnaires on ICT-Readiness for Agricultural Science Instruction TQICTRASI and LQICTRASI respectively were used for data collection. The two questionnaires were subjected to Cronbach alpha coefficient with the results 0.86 and 0.82 respectively. Five research hypotheses were tested at 0.05 level of significance. Findings revealed that teachers in private senior secondary school (SSS) were more ready and prepared than their counterparts in public SSS with the result t-value = 4.25 greater than t-critical = 2.77, df = 4 at p<0.05. Also, learners in private SSS were more prepared and ready for the utilisation of ICT-facilities for agricultural science instruction with the result t-value = 3.51 greater than t-critical = 1.98, df = 118 at p<0.05. However, male and female learners in both private and public SSS were equally prepared and ready for the ICT-facilities utilisation for agricultural science instruction, thus, there were no significant differences in their ICT-readiness. Therefore, the study proffered that, both male and female teachers and learners should be more ICT-compliant and always ready to upgrade their skills and knowledge in ICT-facilities, utilisation for agricultural science instruction and even for other school subjects particularly in Ogun State and in generally in Nigeria.Keywords: ICT-readiness, teachers’ and learners’ assessment, private and public senior secondary schools, agricultural science instruction
Procedia PDF Downloads 371928 System of System Decisions Framework for Cross-Border Railway Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki, Anastasia Kalamakidou
Abstract:
Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in the decision process and –many times- the investment and business risks are high. Decision makers and stakeholders need to define the framework and the outputs of the decision process taking into account the project characteristics, the business uncertainties, and the different expectations. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross-border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analysed. Adopting the on system of system methodological approach, the decision making the framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey, and Bulgaria.Keywords: system of system decision making, managing decisions for transport projects, decision support framework, defining decision process
Procedia PDF Downloads 306927 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator
Authors: Malory Beaujolais
Abstract:
Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 40926 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour
Abstract:
In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.Keywords: HVOF, temperature thickness, velocity, WC-12Co
Procedia PDF Downloads 239925 Analysis of Possible Causes of Fukushima Disaster
Authors: Abid Hossain Khan, Syam Hasan, M. A. R. Sarkar
Abstract:
Fukushima disaster is one of the most publicly exposed accidents in a nuclear facility which has changed the outlook of people towards nuclear power. Some have used it as an example to establish nuclear energy as an unsafe source, while others have tried to find the real reasons behind this accident. Many papers have tried to shed light on the possible causes, some of which are purely based on assumptions while others rely on rigorous data analysis. To our best knowledge, none of the works can say with absolute certainty that there is a single prominent reason that has paved the way to this unexpected incident. This paper attempts to compile all the apparent reasons behind Fukushima disaster and tries to analyze and identify the most likely one.Keywords: fuel meltdown, Fukushima disaster, Manmade calamity, nuclear facility, tsunami
Procedia PDF Downloads 264924 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism
Authors: Arish Iqbal, Santosh Kumar Singh
Abstract:
Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)
Procedia PDF Downloads 239923 Preschool Teachers' Teaching Performance in Relation to Their Technology and 21st Century Skills
Authors: Vida Dones-Jimenez
Abstract:
The main purpose of this study is to determine the preschool teachers’ technology and 21st-century skills and its relation to teachers’ performance. The participants were 94 preschool teachers and 59 school administrators from the CDAPS member schools. The data were collected by using 21st Century Skill, developed by ISSA (2009), Technology Skills of Teachers Survey (2013) and Teacher Performance Evaluation Criteria and Descriptors (200) was modified by the current researcher to suit the needs of her study and was administered personally by her. The surveys were designed to measure the participants’ 21st-century skills, technology skills and teaching performance. The result of the study indicates that the majority of the preschool teachers are the college graduate. Most of them are in the teaching profession for 0 to 10 years. It also indicated that the majority of the school administrators are masters’ degree holder. The preschool teachers are outstanding in their teaching performance as rated by the school administrators. The preschool teachers are skillful in using technology, and they are very skillful in executing the 21st-century skills in teaching. It was further determined that no significant difference between preschool teachers 21st-century skill in regards to educational attainment same as with the number of years in teaching, likewise with their technology skills. Furthermore, the study has shown that there is a very weak relationship between technology and 21st-century skills of preschool teachers, a weak relationship between technology skills and teaching performance and a very weak relationship between 21st-century skills and teaching performance were also established. The study recommends that the preschool teachers should be encouraged to enroll in master degree programs. School administrators should support the implementation of newly adopted technologies and support faculty members at various levels of use and experience. It is also recommended that regular review of the professional development plan be undertaken to upgrade 21st-century teaching and learning skills of preschool teachers.Keywords: preschool teacher, teaching performance, technology, 21st century skills
Procedia PDF Downloads 397922 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions
Abstract:
In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.Keywords: turbofan, power, efficiency, trust
Procedia PDF Downloads 299921 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 305920 The Tourism Pattern Based on Lifestyle: A Case Study of Suzhou City in China
Authors: Ling Chen, Lanyan Peng
Abstract:
In the new round of institutional reform of the State Council, Ministry of Culture and Ministry of Tourism were formed into a new department, Ministry of Culture and Tourism, which embodied the idea of the fusion development of cultural and tourism industries. At the same time, domestic tourists pay more attention to the tourism experience and tourism quality. The tourism patterns have been changed from the sightseeing mode of the individual scenic spot to the lifestyle mode of feeling the cultural atmosphere of the tourist destination. Therefore, this paper focuses on the tourism pattern based on lifestyle, studies the development status, content, and implementation measures of the tourism pattern. As the tourism pattern based on lifestyle integrating cultural and tourism industries in-depth, tourists can experience the living atmosphere, living conditions and living quality of the tourist destination, and deeply understand the urban cultural connotation during the trip. Suzhou has taken a series of measures to build up a tourism pattern based on lifestyle-'Suzhou life' tourism, including regional planning of tourism, integration of cultural resources, construction of urban atmosphere, and upgrading infrastructure. 'Suzhou life' tourism is based on the Suzhou food (cooked wheaten food, dim sum, specialty snacks), tourist attractions (Suzhou gardens, the ancient city) and characteristic recreational ways (appreciating Kun opera, enjoying Suzhou Pingtan, tea drinking). And the continuous integration of the three components above meet the spiritual, cultural needs of tourists and upgrade the tourism pattern based on lifestyle. Finally, the paper puts forward the tourism pattern planning suggestions.Keywords: tourism pattern, lifestyle, integration of cultural and tourism industries, Suzhou life
Procedia PDF Downloads 237919 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste
Authors: David Holton, Michelle Dickinson, Giovanni Carta
Abstract:
The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel
Procedia PDF Downloads 284918 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate
Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre
Abstract:
Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort
Procedia PDF Downloads 148917 Further Investigation of Core Degradation Using Quench Test Facility Results
Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev
Abstract:
This paper presents an application of the ASTEC V2r3p3 computer code for simulation of QUENCH-12 experiment. The test has been performed to investigate the behavior of VVER type of fuel assemblies during severe accident conditions. In the performed analyses it has been assessed the mass of generated hydrogen during the experiment flooding of overheated core. The comparison of ASTECv2r3p3 calculated results with measured test data shows good agreement.Keywords: hydrogen production, VVER, QUENCH facility, severe accident, reactor core
Procedia PDF Downloads 229916 The Establishment and Application of TRACE/FRAPTRAN Model for Kuosheng Nuclear Power Plant
Authors: S. W. Chen, W. K. Lin, J. R. Wang, C. Shih, H. T. Lin, H. C. Chang, W. Y. Li
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 type NPP and located on the northern coast of Taiwan. First, Kuosheng NPP TRACE model were developed in this research. In order to assess the system response of Kuosheng NPP TRACE model, startup tests data were used to evaluate Kuosheng NPP TRACE model. Second, the over pressurization transient analysis of Kuosheng NPP TRACE model was performed. Besides, in order to confirm the mechanical property and integrity of fuel rods, FRAPTRAN analysis was also performed in this study.Keywords: TRACE, safety analysis, BWR/6, FRAPTRA
Procedia PDF Downloads 559915 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 75914 Slaughter and Carcass Characterization, and Sensory Qualities of Native, Pure, and Upgraded Breeds of Goat Raised in the Philippines
Authors: Jonathan N. Nayga, Emelita B. Valdez, Mila R. Andres, Beulah B. Estrada, Emelina A. Lopez, Rogelio B. Tamayo, Aubrey Joy M. Balbin
Abstract:
Goat production is one of the activities included in integrated farming in the Philippines. Goats are raised for its meat and regardless of breed the animal is slaughtered for this purpose. In order to document the carcass yield of different goats slaughtered, five (5) different breeds of goats to include Purebred Boer and Anglo-nubian, Crossbred Boer and Anglo-nubian and Philippine Native goat were used in the study. Data on slaughter parameters, carcass characteristics, and sensory evaluation were gathered and analyzed using Complete Random Design (CRD) at 5% level of significance and the results of carcass conformation were assessed descriptively. Results showed that slaughter data such as slaughter/live weight, hot and chilled carcass weights, dressing percentage and percentage drip loss were significantly different (P>0.05) among breeds. On carcass and meat characteristics, pure breed and upgraded Boer were found to be moderately muscular while Native goat was rated as thin muscular. The color of the carcass also revealed that Purebred and crossbred Boer were described dark red, while Native goat was noted to be slightly pale. On sensory evaluation, the results indicated that there was no significant difference (P>0.05) among breeds evaluated. It is therefore concluded that purebred goat has heavier carcass, while both purebred Boer and upgrade are rated slightly muscular. It is further confirms that regardless of breed, goat will have the same sensory characteristics. Thus, it is recommended to slaughter heavier goats to obtain more carcasses with better conformation and quality.Keywords: carcass quality, goat, sensory evaluation, slaughter
Procedia PDF Downloads 347913 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Iheanyi Umez-Eronini
Abstract:
Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation
Procedia PDF Downloads 82912 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics
Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta
Abstract:
The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology
Procedia PDF Downloads 133911 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage
Authors: Emanuele Bonamente, Andrea Aquino
Abstract:
This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies
Procedia PDF Downloads 313910 Social Work Practice to Labour Welfare: A Proposed Model of Field Work Practicum and Role of Social Worker in India
Authors: Naeem Ahmed
Abstract:
Social work is a professional activity based on the approach of “helping people to help themselves” (Stroup). Social work education and practice both are based on humanitarian philosophy in which social workers try to increase the happiness of the society and to reduce the problems of society. Labour welfare is a specialised field of social work which especially focuses on welfare of organised and unorganised labour. In India labour is facing numerous problems in both organised and unorganised sectors because of ignorance, illiteracy, high rate of unemployment etc. In most of the Indian social work institutions we have this specialization with different names like Human Resource Management or Industrial Relation and Personnel Management or Industrial Relations and Labour Welfare or Industrial Social Work etc. Field work practice is integrated part of social work education curriculum in all specialised field. In India we have different field work practice models being followed in different institutions. The main objective of this paper is to prepare a universal field work practicum model in the field of labour welfare. This paper is exploratory in nature, researcher used personal experience and secondary data (model of field work practice in different institutions like Aligarh Muslim University, Pondicherry University, Central University of Karnataka, University of Lucknow, MJP Rohilkhand University Bareilly etc.) Researcher found that there is an immediate need to upgrade the curriculum or field work practice in this particular field, as more than 40 percent of total population engaged in either unorganised or organised sector (NSSO 2011-12) and they are not aware about their rights. In this way a social worker can play an important role in existing labour welfare facilities by making them aware.Keywords: field work, labour welfare, organised labour, social work practice, unorganised labour
Procedia PDF Downloads 399909 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption
Authors: Umar Hayatu Sidik
Abstract:
Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone
Procedia PDF Downloads 66908 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management
Authors: Thewodros K. Geberemariam
Abstract:
The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space
Procedia PDF Downloads 150