Search results for: data mining techniques
29018 Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement
Authors: Rajkumar Ghosh
Abstract:
Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics.Keywords: earthquake, out-of-sequence thrust, disaster, human life
Procedia PDF Downloads 7729017 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 35029016 Testing the Change in Correlation Structure across Markets: High-Dimensional Data
Authors: Malay Bhattacharyya, Saparya Suresh
Abstract:
The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition
Procedia PDF Downloads 12529015 Assessment of Negative Impacts Affecting Public Transportation Modes and Infrastructure in Burgersfort Town towards Building Urban Sustainability
Authors: Ntloana Hlabishi Peter
Abstract:
The availability of public transportation modes and qualitative infrastructure is a burning issue that affects urban sustainability. Public transportation is indispensable in providing adequate transportation means to people at an affordable price, and it promotes public transport reliance. Burgersfort town has a critical condition on the urban public transportation infrastructure which affects the bus and taxi public transport modes and the existing infrastructure. The municipality is regarded as one of the mining towns in Limpopo Province considering the availability of mining activities and proposal on establishment of a Special Economic Zone (SEZ). The study aim is to assess the efficacy of current public transportation infrastructure and to propose relevant recommendations that will unlock the possibility of future supportable public transportation systems. The Key Informant Interview (KII) was used to acquire data on the views from commuters and stakeholders involved. There KII incorporated three relevant questions in relation to services rendered in public transportation. Relevant literature relating to public transportation modes and infrastructure revealed the imperatives of public transportation infrastructure, and relevant legislation was reviewed concerning public transport infrastructure. The finding revealed poor conditions on the public transportation ranks and also inadequate parking space for public transportation modes. The study reveals that 100% of people interviewed were not satisfied with the condition of public transportation infrastructure and 100% are not satisfied with the services offered by public transportation sectors. The findings revealed that the municipality is the main player who can upgrade the existing conditions of public transportation. The study recommended that an intermodal transportation facility must be established to resolve the emerging challenges.Keywords: public transportation, modes, infrastructure, urban sustainability
Procedia PDF Downloads 22629014 Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits
Authors: Hasan Çiçekli, Ahmet Gökçen, Uğur Çam
Abstract:
In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35 µm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.Keywords: integrator circuits, MOS-C realization, nonlinearity cancellation, tuneable resistors
Procedia PDF Downloads 53329013 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State
Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule
Abstract:
The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State
Procedia PDF Downloads 32129012 An Application of Modified M-out-of-N Bootstrap Method to Heavy-Tailed Distributions
Authors: Hannah F. Opayinka, Adedayo A. Adepoju
Abstract:
This study is an extension of a prior study on the modification of the existing m-out-of-n (moon) bootstrap method for heavy-tailed distributions in which modified m-out-of-n (mmoon) was proposed as an alternative method to the existing moon technique. In this study, both moon and mmoon techniques were applied to two real income datasets which followed Lognormal and Pareto distributions respectively with finite variances. The performances of these two techniques were compared using Standard Error (SE) and Root Mean Square Error (RMSE). The findings showed that mmoon outperformed moon bootstrap in terms of smaller SEs and RMSEs for all the sample sizes considered in the two datasets.Keywords: Bootstrap, income data, lognormal distribution, Pareto distribution
Procedia PDF Downloads 18629011 Development of a Finite Element Model of the Upper Cervical Spine to Evaluate the Atlantoaxial Fixation Techniques
Authors: Iman Zafarparandeh, Muzammil Mumtaz, Paniz Taherzadeh, Deniz Erbulut
Abstract:
The instability in the atlantoaxial joint may occur due to cervical surgery, congenital anomalies, and trauma. There are different types of fixation techniques proposed for restoring the stability and preventing harmful neurological deterioration. Application of the screw constructs has become a popular alternative to the older techniques for stabilizing the joint. The main difference between the various screw constructs is the type of the screw which can be lateral mass screw, pedicle screw, transarticular screw, and translaminar screw. The aim of this paper is to study the effect of three popular screw constructs fixation techniques on the biomechanics of the atlantoaxial joint using the finite element (FE) method. A three-dimensional FE model of the upper cervical spine including the skull, C1 and C2 vertebrae, and groups of the existing ligaments were developed. The accurate geometry of the model was obtained from the CT data of a 35-year old male. Three screw constructs were designed to compare; Magerl transarticular screw (TA-Screw), Goel-Harms lateral mass screw and pedicle screw (LM-Screw and Pedicle-Screw), and Wright lateral mass screw and translaminar screw (LM-Screw and TL-Screw). Pure moments were applied to the model in the three main planes; flexion (Flex), extension (Ext), axial rotation (AR) and lateral bending (LB). The range of motion (ROM) of C0-C1 and C1-C2 segments for the implanted FE models are compared to the intact FE model and the in vitro study of Panjabi (1988). The Magerl technique showed less effect on the ROM of C0-C1 than the other two techniques in sagittal plane. In lateral bending and axial rotation, the Goel-Harms and Wright techniques showed less effect on the ROM of C0-C1 than the Magerl technique. The Magerl technique has the highest fusion rate as 99% in all loading directions for the C1-C2 segment. The Wright technique has the lowest fusion rate in LB as 79%. The three techniques resulted in the same fusion rate in extension loading as 99%. The maximum stress for the Magerl technique is the lowest in all load direction compared to other two techniques. The maximum stress in all direction was 234 Mpa and occurred in flexion with the Wright technique. The maximum stress for the Goel-Harms and Wright techniques occurred in lateral mass screw. The ROM obtained from the FE results support this idea that the fusion rate of the Magerl is more than 99%. Moreover, the maximum stress occurred in each screw constructs proves the less failure possibility for the Magerl technique. Another advantage of the Magerl technique is the less number of components compared to other techniques using screw constructs. Despite the benefits of the Magerl technique, there are drawbacks to using this method such as reduction of the C1 and C2 before screw placement. Therefore, other fixation methods such as Goel-Harms and Wright techniques find the solution for the drawbacks of the Magerl technique by adding screws separately to C1 and C2. The FE model implanted with the Wright technique showed the highest maximum stress almost in all load direction.Keywords: cervical spine, finite element model, atlantoaxial, fixation technique
Procedia PDF Downloads 38429010 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 1429009 An Appraisal of Maintenance Management Practices in Federal University Dutse and Jigawa State Polytechnic Dutse, Nigeria
Authors: Aminu Mubarak Sadis
Abstract:
This study appraised the maintenance management practice in Federal University Dutse and Jigawa State Polytechnic Dutse, in Nigeria. The Physical Planning, Works and Maintenance Departments of the two Higher Institutions (Federal University Dutse and Jigawa State Polytechnic) are responsible for production and maintenance management of their physical assets. Over–enrollment problem has been a common feature in the higher institutions in Nigeria, Data were collected by the administered questionnaires and subsequent oral interview to authenticate the completed questionnaires. Random sampling techniques was used in selecting 150 respondents across the various institutions (Federal University Dutse and Jigawa State Polytechnic Dutse). Data collected was analyzed using Statistical Package for Social Science (SPSS) and t-test statistical techniques The conclusion was that maintenance management activities are yet to be given their appropriate attention on functions of the university and polytechnic which are crucial to improving teaching, learning and research. The unit responsible for maintenance and managing facilities should focus on their stated functions and effect changes were possible.Keywords: appraisal, maintenance management, university, Polytechnic, practices
Procedia PDF Downloads 25229008 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 13429007 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation
Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim
Abstract:
Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time
Procedia PDF Downloads 7229006 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy
Authors: Kemal Polat
Abstract:
In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.Keywords: machine learning, data weighting, classification, data mining
Procedia PDF Downloads 32529005 Estimation of Rock Strength from Diamond Drilling
Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi
Abstract:
The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength
Procedia PDF Downloads 13729004 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine
Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 7029003 Potential Use of Leaching Gravel as a Raw Material in the Preparation of Geo Polymeric Material as an Alternative to Conventional Cement Materials
Authors: Arturo Reyes Roman, Daniza Castillo Godoy, Francisca Balarezo Olivares, Francisco Arriagada Castro, Miguel Maulen Tapia
Abstract:
Mining waste–based geopolymers are a sustainable alternative to conventional cement materials due to their contribution to the valorization of mining wastes as well as to the new construction materials with reduced fingerprints. The objective of this study was to determine the potential of leaching gravel (LG) from hydrometallurgical copper processing to be used as a raw material in the manufacture of geopolymer. NaOH, Na2SiO3 (modulus 1.5), and LG were mixed and then wetted with an appropriate amount of tap water, then stirred until a homogenous paste was obtained. A liquid/solid ratio of 0.3 was used for preparing mixtures. The paste was then cast in cubic moulds of 50 mm for the determination of compressive strengths. The samples were left to dry for 24h at room temperature, then unmoulded before analysis after 28 days of curing time. The compressive test was conducted in a compression machine (15/300 kN). According to the laser diffraction spectroscopy (LDS) analysis, 90% of LG particles were below 500 μm. The X-ray diffraction (XRD) analysis identified crystalline phases of albite (30 %), Quartz (16%), Anorthite (16 %), and Phillipsite (14%). The X-ray fluorescence (XRF) determinations showed mainly 55% of SiO2, 13 % of Al2O3, and 9% of CaO. ICP (OES) concentrations of Fe, Ca, Cu, Al, As, V, Zn, Mo, and Ni were 49.545; 24.735; 6.172; 14.152, 239,5; 129,6; 41,1;15,1, and 13,1 mg kg-1, respectively. The geopolymer samples showed resistance ranging between 2 and 10 MPa. In comparison with the raw material composition, the amorphous percentage of materials in the geopolymer was 35 %, whereas the crystalline percentage of main mineral phases decreased. Further studies are needed to find the optimal combinations of materials to produce a more resistant and environmentally safe geopolymer. Particularly are necessary compressive resistance higher than 15 MPa are necessary to be used as construction unit such as bricks.Keywords: mining waste, geopolymer, construction material, alkaline activation
Procedia PDF Downloads 9429002 Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan
Authors: Ahmed Elwaleed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Koji Arizono, Yasuhiro Ishibashi
Abstract:
Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers.Keywords: mercury pollution, artisanal and small-scale gold mining, health risk assessment, hazard index, soil and tailings, enrichment factor
Procedia PDF Downloads 8329001 Critical Analysis of Different Actuation Techniques for a Micro Cantilever
Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri
Abstract:
The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.Keywords: actuation techniques, microswitch, micro actuator, microsystems
Procedia PDF Downloads 40829000 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden
Authors: Suchhanda Ghosh, A. K. Paul
Abstract:
Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden
Procedia PDF Downloads 19128999 Domain Adaptive Dense Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, contrastive learning, unsupervised training
Procedia PDF Downloads 10428998 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-Creation
Authors: Amna Javed, Hisashi Masuda, Youji Kohda
Abstract:
This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic. As Islamic banking is based on Islamic principles that are more concerned with non-economic values (well-being, partnership, fairness, trust worthy, and justice) than economic values as money in terms of interest. This study is important to know the providers point of view about the co-created values, because, it may be more sustainable and appropriate for today’s unpredictable socioeconomic environment. Data were collected from 4 banks (2 Islamic and 2 conventional banks). Text mining technique is applied for data analysis, and values with 100% occurrences in Islamic banking are chosen. The results reflect that Islamic banking is more centric towards non-economic values than economic values and it promotes team work and partnership concept by applying Islamic spirit and trust worthiness concept.Keywords: economic values, Islamic banking, non-economic values, value system
Procedia PDF Downloads 46328997 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review
Authors: Rajkumar Ghosh
Abstract:
The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements
Procedia PDF Downloads 8428996 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 15628995 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 14828994 Using Data Mining in Automotive Safety
Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler
Abstract:
Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact
Procedia PDF Downloads 38228993 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 14028992 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 43328991 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 20128990 Comparisons of Surveying with Terrestrial Laser Scanner and Total Station for Volume Determination of Overburden and Coal Excavations in Large Open-Pit Mine
Authors: B. Keawaram, P. Dumrongchai
Abstract:
The volume of overburden and coal excavations in open-pit mine is generally determined by conventional survey such as total station. This study aimed to evaluate the accuracy of terrestrial laser scanner (TLS) used to measure overburden and coal excavations, and to compare TLS survey data sets with the data of the total station. Results revealed that, the reference points measured with the total station showed 0.2 mm precision for both horizontal and vertical coordinates. When using TLS on the same points, the standard deviations of 4.93 cm and 0.53 cm for horizontal and vertical coordinates, respectively, were achieved. For volume measurements covering the mining areas of 79,844 m2, TLS yielded the mean difference of about 1% and the surface error margin of 6 cm at the 95% confidence level when compared to the volume obtained by total station.Keywords: mine, survey, terrestrial laser scanner, total station
Procedia PDF Downloads 38528989 Sustainable Technologies for Decommissioning of Nuclear Facilities
Authors: Ahmed Stifi, Sascha Gentes
Abstract:
The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.Keywords: sustainable technologies, decontamination, pipeline, nuclear industry
Procedia PDF Downloads 303