Search results for: artificial agency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2868

Search results for: artificial agency

2058 Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 446
2057 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe

Authors: Ahmad Haidar

Abstract:

Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.

Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market

Procedia PDF Downloads 77
2056 The EU’s Role in Exporting Digital Privacy and Security Standards: A Legal Framework for Global Normative Diffusion

Authors: Yuval Reinfeld

Abstract:

This paper explores the European Union’s expanding influence as a global regulatory power, particularly in the realms of legal, security, and privacy challenges within the digital landscape. As digital regulation becomes increasingly vital, the EU has positioned itself as a leading exporter of privacy and cybersecurity standards through landmark frameworks like the General Data Protection Regulation (GDPR), the Artificial Intelligence Act (AIA), and the Digital Services Act (DSA). These regulations have set global benchmarks, extending their influence well beyond Europe’s borders by shaping legal frameworks in third countries and guiding the development of global digital governance. Central to this regulatory diffusion is the European Court of Justice (CJEU), whose rulings consistently reinforce and extend the reach of EU standards on an international scale. Through mechanisms such as trade agreements, adequacy decisions, and multilateral cooperation, the EU has constructed a regulatory ecosystem that other jurisdictions increasingly adopt. This paper investigates key CJEU cases to illustrate how the EU’s legal instruments in privacy, security, and AI contribute to its role as a global standard-setter. By examining the intersection of digital governance, international law, and normative power, this research provides a thorough analysis of the EU’s regulatory impact on global privacy, cybersecurity, and AI frameworks.

Keywords: digital privacy, cybersecurity, GDPR, European Union Law, artificial intelligence, global normative power

Procedia PDF Downloads 24
2055 Governance of Climate Adaptation Through Artificial Glacier Technology: Lessons Learnt from Leh (Ladakh, India) In North-West Himalaya

Authors: Ishita Singh

Abstract:

Social-dimension of Climate Change is no longer peripheral to Science, Technology and Innovation (STI). Indeed, STI is being mobilized to address small farmers’ vulnerability and adaptation to Climate Change. The experiences from the cold desert of Leh (Ladakh) in North-West Himalaya illustrate the potential of STI to address the challenges of Climate Change and the needs of small farmers through the use of Artificial Glacier Techniques. Small farmers have a unique technique of water harvesting to augment irrigation, called “Artificial Glaciers” - an intricate network of water channels and dams along the upper slope of a valley that are located closer to villages and at lower altitudes than natural glaciers. It starts to melt much earlier and supplements additional irrigation to small farmers’ improving their livelihoods. Therefore, the issue of vulnerability, adaptive capacity and adaptation strategy needs to be analyzed in a local context and the communities as well as regions where people live. Leh (Ladakh) in North-West Himalaya provides a Case Study for exploring the ways in which adaptation to Climate Change is taking place at a community scale using Artificial Glacier Technology. With the above backdrop, an attempt has been made to analyze the rural poor households' vulnerability and adaptation practices to Climate Change using this technology, thereby drawing lessons on vulnerability-livelihood interactions in the cold desert of Leh (Ladakh) in North-West Himalaya, India. The study is based on primary data and information collected from 675 households confined to 27 villages of Leh (Ladakh) in North-West Himalaya, India. It reveals that 61.18% of the population is driving livelihoods from agriculture and allied activities. With increased irrigation potential due to the use of Artificial Glaciers, food security has been assured to 77.56% of households and health vulnerability has been reduced in 31% of households. Seasonal migration as a livelihood diversification mechanism has declined in nearly two-thirds of households, thereby improving livelihood strategies. Use of tactical adaptations by small farmers in response to persistent droughts, such as selling livestock, expanding agriculture lands, and use of relief cash and foods, have declined to 20.44%, 24.74% and 63% of households. However, these measures are unsustainable on a long-term basis. The role of policymakers and societal stakeholders becomes important in this context. To address livelihood challenges, the role of technology is critical in a multidisciplinary approach involving multilateral collaboration among different stakeholders. The presence of social entrepreneurs and new actors on the adaptation scene is necessary to bring forth adaptation measures. Better linkage between Science and Technology policies, together with other policies, should be encouraged. Better health care, access to safe drinking water, better sanitary conditions, and improved standards of education and infrastructure are effective measures to enhance a community’s adaptive capacity. However, social transfers for supporting climate adaptive capacity require significant amounts of additional investment. Developing institutional mechanisms for specific adaptation interventions can be one of the most effective ways of implementing a plan to enhance adaptation and build resilience.

Keywords: climate change, adaptation, livelihood, stakeholders

Procedia PDF Downloads 70
2054 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 365
2053 Japanese English in Travel Brochures

Authors: Premvadee Na Nakornpanom

Abstract:

This study investigates the role and impact of English loan words on Japanese language in travel brochures. The issues arising from a potential switch to English as a tool to absorb the West’s advanced knowledge and technology in the modernization of Japan to a means of linking Japan with the rest of the world and enhancing the country’s international presence. Sociolinguistic contexts were used to analyze data collected from the Nippon Travel agency "HIS"’s brochures in Thailand, revealing that English plays the most important role as lexical gap fillers and special effect givers. An increasing mixer of English to Japanese affects how English is misused, the way the Japanese see the world and the present generation’s communication gap.

Keywords: English, Japanese, loan words, travel brochure

Procedia PDF Downloads 235
2052 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
2051 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
2050 Intelligent Fishers Harness Aquatic Organisms and Climate Change

Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee

Abstract:

Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.

Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery

Procedia PDF Downloads 111
2049 Narratives of Self-Renewal: Looking for A Middle Earth In-Between Psychoanalysis and the Search for Consciousness

Authors: Marilena Fatigante

Abstract:

Contemporary psychoanalysis is increasingly acknowledging the existential demands of clients in psychotherapy. A significant aspect of the personal crises that patients face today is often rooted in the difficulty to find meaning in their own existence, even after working through or resolving traumatic memories and experiences. Tracing back to the correspondence between Freud and Romain Rolland (1927), psychoanalysis could not ignore that investigation of the psyche also encompasses the encounter with deep, psycho-sensory experiences, which involve a sense of "being one with the external world as a whole", the well-known “oceanic feeling”, as Rolland posed it. Despite the recognition of Non-ordinary States of Consciousness (NSC) as catalysts for transformation in clinical practice, highlighted by neuroscience and results from psychedelic-assisted therapies, there is few research on how psychoanalytic knowledge can integrate with other treatment traditions. These traditions, commonly rooted in non -Western, unconventional, and non-formal psychological knowledge, emphasize the individual’s innate tendency toward existential integrity and transcendence of self-boundaries. Inspired by an autobiographical account, this paper examines narratives of 12 individuals, who engaged in psychoanalytic therapy and also underwent treatment involving a non-formal helping relationship with an expert guide in consciousness, which included experience of this nature. The guide relies on 35 yrs of experience in Psychological, multidisciplinary studies in Human Sciences and Art, and demonstrates knowledge of many wisdom traditions, ranging from Eastern to Western philosophy, including Psychoanalysis and its development in cultural perspective (e.g, Ethnopsychiatry). Analyses focused primarily on two dimensions that research has identified as central in assessing the degree of treatment “success” in the patients’ narrative accounts of their therapies: agency and coherence, defined respectively as the increase, expressed in language, of the client’s perceived ability to manage his/her own challenges and the capacity, inherent in “narrative” itself as a resource for meaning making (Bruner, 1990), to provide the subject with a sense of unity, endowing his /her life experience with temporal and logical sequentiality. The present study reports that, in all narratives from the participants, agency and coherence are described differently than in “common” psychotherapy narratives. Although the participants consistently identified themselves as responsible agentic subject, the sense of agency derived from the non-conventional guidance pathway is never reduced to a personal, individual accomplishment. Rather, the more a new, fuller sense of “Life” (more than “Self”) develops out of the guidance pathway they engage with the expert guide, the more they “surrender” their own sense of autonomy and self-containment. Something, which Safran (2016) identified as well talking about the sense of surrender and “grace” in psychoanalytic sessions. Secondly, narratives of individuals engaging with the expert guide describe coherence not as repairing or enforcing continuity but as enhancing their ability to navigate dramatic discontinuities, falls, abrupt leaps and passages marked by feelings of loss and bereavement. The paper ultimately explores whether valid criteria can be established to analyze experiences of non-conventional paths of self-evolution. These paths are not opposed or alternative to conventional ones, and should not be simplistically dismissed as exotic or magical.

Keywords: oceanic feeling, non conventional guidance, consciousness, narratives, treatment outcomes

Procedia PDF Downloads 38
2048 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: artificial neural network, load estimation, regional survey, rural electrification

Procedia PDF Downloads 123
2047 The Effect of Artificial Intelligence on Communication and Information Systems

Authors: Sameh Ibrahim Ghali Hanna

Abstract:

Information system (IS) are fairly crucial in the operation of private and public establishments in growing and developed international locations. Growing countries are saddled with many project failures throughout the implementation of records systems. However, successful information systems are greatly wished for in developing nations in an effort to decorate their economies. This paper is extraordinarily critical in view of the high failure fee of data structures in growing nations, which desire to be decreased to minimal proper levels by means of advocated interventions. This paper centers on a review of IS development in developing international locations. The paper gives evidence of the IS successes and screw-ups in developing nations and posits a version to deal with the IS failures. The proposed model can then be utilized by means of growing nations to lessen their IS mission implementation failure fee. A contrast is drawn between IS improvement in growing international locations and evolved international locations. The paper affords valuable records to assist in decreasing IS failure, and growing IS models and theories on IS development for developing countries.

Keywords: research information systems (RIS), research information, heterogeneous sources, data quality, data cleansing, science system, standardization artificial intelligence, AI, enterprise information system, EIS, integration developing countries, information systems, IS development, information systems failure, information systems success, information systems success model

Procedia PDF Downloads 21
2046 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
2045 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 80
2044 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 120
2043 Leadership Styles and Adoption of Risk Governance in Insurance and Energy Industry: A Comparative Case Study

Authors: Ruchi Agarwal

Abstract:

In today’s world, companies are operating in dynamic, uncertain and ambiguous business environments. Globally, more companies are failing due to Environmental, Social and Governance (ESG) factors than ever. Corporate governance and risk management are intertwined in nature. For decades, corporate governance and risk management have been influenced by internal and external factors. Three schools of thought have influenced risk governance for decades: Agency theory, Contingency theory, and Institutional theory. Agency theory argues that agents have interests conflicting with principal interests and the information problem. Contingency theory suggests that risk management adoption is influenced by internal and external factors, while Institutional theory suggests that organizations legitimize risk management with regulators, competitors, and professional bodies. The conflicting objectives of theories have created problems for executives in organizations in the adoption of Risk Governance. So far, there are many studies that discussed risk culture and the role of actors in risk governance, but there are rare studies discussing the role of risk culture in the adoption of risk governance from a leadership style perspective. This study explores the adoption of risk governance in two contrasting industries, such as the Insurance and energy business, to understand whether risk governance is influenced by internal/external factors or whether risk culture is influenced by leaders. We draw empirical evidence by comparing the cases of an Indian insurance company and a renewable energy-based firm in India. We interviewed more than 20 senior executives of companies and collected annual reports, risk management policies, and more than 10 PPTs and other reports from 2017 to 2024. We visited the company for follow-up questions several times. The findings of my research revealed that both companies have used risk governance for strategic renewal of the company. Insurance companies use a transactional leadership style based on performance and reward for improving risk, while energy companies use rather symbolic management to make debt restructuring meaningful for stakeholders. Overall, both companies turned from loss-making to profitable ones in a few years. This comparative study highlights the role of different leadership styles in the adoption of risk governance. The study is also distinct as previous research rarely studied risk governance in two contrasting industries in reference to leadership styles.

Keywords: leadership style, corporate governance, risk management, risk culture, strategic renewal

Procedia PDF Downloads 48
2042 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 17
2041 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
2040 Constraints on IRS Control: An Alternative Approach to Tax Gap Analysis

Authors: J. T. Manhire

Abstract:

A tax authority wants to take actions it knows will foster the greatest degree of voluntary taxpayer compliance to reduce the “tax gap.” This paper suggests that even if a tax authority could attain a state of complete knowledge, there are constraints on whether and to what extent such actions would result in reducing the macro-level tax gap. These limits are not merely a consequence of finite agency resources. They are inherent in the system itself. To show that this is one possible interpretation of the tax gap data, the paper formulates known results in a different way by analyzing tax compliance as a population with a single covariate. This leads to a standard use of the logistic map to analyze the dynamics of non-compliance growth or decay over a sequence of periods. This formulation gives the same results as the tax gap studies performed over the past fifty years in the U.S. given the published margins of error. Limitations and recommendations for future work are discussed, along with some implications for tax policy.

Keywords: income tax, logistic map, tax compliance, tax law

Procedia PDF Downloads 120
2039 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: cyber security, intrusion prevention, optimal policy, Q-learning

Procedia PDF Downloads 236
2038 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 258
2037 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 93
2036 Department of Social Development/Japan International Cooperation Agency's Journey from South African Community to Southern African Region

Authors: Daisuke Sagiya, Ren Kamioka

Abstract:

South Africa has ratified the United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) on 30th November 2007. In line with this, the Department of Social Development (DSD) revised the White Paper on the Rights of Persons with Disabilities (WPRPD), and the Cabinet approved it on 9th December 2015. The South African government is striving towards the elimination of poverty and inequality in line with UNCRPD and WPRPD. However, there are minimal programmes and services that have been provided to persons with disabilities in the rural community. In order to address current discriminative practices, disunity and limited self-representation in rural community, DSD in cooperation with the Japan International Cooperation Agency (JICA) is implementing the 'Project for the Promotion of Empowerment of Persons with Disabilities and Disability Mainstreaming' from May 2016 to May 2020. The project is targeting rural community as the project sites, namely 1) Collins Chabane municipality, Vhembe district, Limpopo and 2) Maluti-a-Phofung municipality, Thabo Mofutsanyana district, Free State. The project aims at developing good practices on Community-Based Inclusive Development (CBID) at the project sites which will be documented as a guideline and applied in other provinces in South Africa and neighbouring countries (Lesotho, Swaziland, Botswana, Namibia, Zimbabwe, and Mozambique). In cooperation with provincial and district DSD and local government, the project is currently implementing various community activities, for example: Establishment of Self-Help Group (SHG) of persons with disabilities and Peer Counselling in the villages, and will conduct Disability Equality Training (DET) and accessibility workshop in order to enhance the CBID in the project sites. In order to universalise good practices on CBID, the authors will explain lessons learned from the project by utilising the theories of disability and development studies and community psychology such as social model of disability, twin-track approach, empowerment theory, sense of community, helper therapy principle, etc. And the authors conclude that in order to realise social participation of persons with disabilities in rural community, CBID is a strong tool and persons with disabilities must play central roles in all spheres of CBID activities.

Keywords: community-based inclusive development, disability mainstreaming, empowerment of persons with disabilities, self-help group

Procedia PDF Downloads 240
2035 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 317
2034 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains

Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh

Abstract:

The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.

Keywords: machine vision, fuzzy logic, rice, quality

Procedia PDF Downloads 419
2033 Comparative Evaluation of Different Extenders and Sperm Protectors to Keep the Spermatozoa Viable for More than 24 Hours

Authors: A. M. Raseona, D. M. Barry, T. L. Nedambale

Abstract:

Preservation of semen is an important process to ensure that semen quality is sufficient for assisted reproductive technology. This study evaluated the effectiveness of different extenders to preserve Nguni bull semen stored at controlled room temperature 24 °C for three days, as an alternative to frozen-thawed semen straws used for artificial insemination. Semen samples were collected from two Nguni bulls using an electro-ejaculator and transported to the laboratory for evaluation. Pooled semen was aliquot into three extenders Triladyl, Ham’s F10 and M199 at a dilution ratio of 1:4 then stored at controlled room temperature 24 °C. Sperm motility was analysed after 0, 24, 48 and 72 hours. Morphology and viability were analysed after 72 hours. The study was replicated four times and data was analysed by analysis of variance (ANOVA). Triladyl showed higher viability percentage and consistent total motility for three days. Ham’s F10 showed higher progressive motility compared to the other extenders. There was no significant difference in viability between Ham’s F10 and M199. No significant difference was also observed in total abnormality between the two Nguni bulls. In conclusion, Nguni semen can be preserved in Triladyl or Ham’s F10 and M199 culture media stored at 24 °C and stay alive for three days. Triladyl proved to be the best extender showing high viability and consistency in total motility as compared to Ham’s F10 and M199.

Keywords: bull semen, artificial insemination, Triladyl, Ham’s F10, M199, viability

Procedia PDF Downloads 500
2032 Neuro-Fuzzy Approach to Improve Reliability in Auxiliary Power Supply System for Nuclear Power Plant

Authors: John K. Avor, Choong-Koo Chang

Abstract:

The transfer of electrical loads at power generation stations from Standby Auxiliary Transformer (SAT) to Unit Auxiliary Transformer (UAT) and vice versa is through a fast bus transfer scheme. Fast bus transfer is a time-critical application where the transfer process depends on various parameters, thus transfer schemes apply advance algorithms to ensure power supply reliability and continuity. In a nuclear power generation station, supply continuity is essential, especially for critical class 1E electrical loads. Bus transfers must, therefore, be executed accurately within 4 to 10 cycles in order to achieve safety system requirements. However, the main problem is that there are instances where transfer schemes scrambled due to inaccurate interpretation of key parameters; and consequently, have failed to transfer several critical loads from UAT to the SAT during main generator trip event. Although several techniques have been adopted to develop robust transfer schemes, a combination of Artificial Neural Network and Fuzzy Systems (Neuro-Fuzzy) has not been extensively used. In this paper, we apply the concept of Neuro-Fuzzy to determine plant operating mode and dynamic prediction of the appropriate bus transfer algorithm to be selected based on the first cycle of voltage information. The performance of Sequential Fast Transfer and Residual Bus Transfer schemes was evaluated through simulation and integration of the Neuro-Fuzzy system. The objective for adopting Neuro-Fuzzy approach in the bus transfer scheme is to utilize the signal validation capabilities of artificial neural network, specifically the back-propagation algorithm which is very accurate in learning completely new systems. This research presents a combined effect of artificial neural network and fuzzy systems to accurately interpret key bus transfer parameters such as magnitude of the residual voltage, decay time, and the associated phase angle of the residual voltage in order to determine the possibility of high speed bus transfer for a particular bus and the corresponding transfer algorithm. This demonstrates potential for general applicability to improve reliability of the auxiliary power distribution system. The performance of the scheme is implemented on APR1400 nuclear power plant auxiliary system.

Keywords: auxiliary power system, bus transfer scheme, fuzzy logic, neural networks, reliability

Procedia PDF Downloads 171
2031 Action Research: Impact of the Health Facilities Infrastructure's Quality on Maternal and Newborn Health

Authors: Ladislas Havugimana, Véronique Zinnen, Mary Hadley, Jean Claude Mwumvaneza, Francois Régis Habarugira, Silas Rudasingwa, Victor Ndaruhutse, Evelyne Bocquet

Abstract:

Rwanda's health systems face various challenges, including low health infrastructure coverage (the objective is to have at least one health center per administrative sector) and insufficient qualified human resources for infrastructure maintenance and financing. Moreover, there is no policy for the preventive maintenance of infrastructures for the health sector. This paper presents action research conducted in seven districts, focusing on the impact of health infrastructure's quality on maternal and neonatal care, with the support of the Belgian cooperation agency through Enable Barame project.

Keywords: health infrastructure, maintenance, maternity, neonatology

Procedia PDF Downloads 146
2030 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data

Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda

Abstract:

Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.

Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation

Procedia PDF Downloads 299
2029 Use of Polymeric Materials in the Architectural Preservation

Authors: F. Z. Benabid, F. Zouai, A. Douibi, D. Benachour

Abstract:

These Fluorinated polymers and polyacrylics have known a wide use in the field of historical monuments. PVDF provides a great easiness to processing, a good UV resistance and good chemical inertia. Although the quality of physical characteristics of the PMMA and its low price with a respect to PVDF, its deterioration against UV radiations limits its use as protector agent for the stones. On the other hand, PVDF/PMMA blend is a compromise of a great development in the field of architectural restoration, since it is the best method in term of quality and price to make new polymeric materials having enhanced properties. Films of different compositions based on the two polymers within an adequate solvent (DMF) were obtained to perform an exposition to artificial ageing and to the salted fog, a spectroscopic analysis (FTIR and UV) and optical analysis (refractive index). Based on its great interest in the field of building, a variety of standard tests has been elaborated for the first time at the central laboratory of ENAP (Souk-Ahras) in order to evaluate our blend performance. The obtained results have allowed observing the behavior of the different compositions of the blend under various tests. The addition of PVDF to PMMA enhances the properties of this last to know the exhibition to the natural and artificial ageing and to the saline fog. On the other hand, PMMA enhances the optical properties of the blend. Finally, 70/30 composition of the blend is in concordance with results of previous works and it is the adequate proportion for an eventual application.

Keywords: blend, PVDF, PMMA, preservation, historic monuments

Procedia PDF Downloads 309