Search results for: open loop simulation
94 Improving Patient Journey in the Obstetrics and Gynecology Emergency Department: A Comprehensive Analysis of Patient Experience
Authors: Lolwa Alansari, Abdelhamid Azhaghdani, Sufia Athar, Hanen Mrabet, Annaliza Cruz, Tamara Alshadafat, Almunzer Zakaria
Abstract:
Introduction: Improving the patient experience is a fundamental pillar of healthcare's quadruple aims. Recognizing the importance of patient experiences and perceptions in healthcare interactions is pivotal for driving quality improvement. This abstract centers around the Patient Experience Program, an endeavor crafted with the purpose of comprehending and elevating the experiences of patients in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). Methodology: This comprehensive endeavor unfolded through a structured sequence of phases following Plan-Do-Study-Act (PDSA) model, spanning over 12 months, focused on enhancing patient experiences in the Obstetrics & Gynecology Emergency Department (OB/GYN ED). The study meticulously examined the journeys of patients with acute obstetrics and gynecological conditions, collecting data from over 100 participants monthly. The inclusive approach covered patients of different priority levels (1-5) admitted for acute conditions, with no exclusions. Historical data from March and April 2022 serves as a benchmark for comparison, strengthening causality claims by providing a baseline understanding of OB/GYN ED performance before interventions. Additionally, the methodology includes the incorporation of staff engagement surveys to comprehensively understand the experiences of healthcare professionals with the implemented improvements. Data extraction involved administering open-ended questions and comment sections to gather rich qualitative insights. The survey covered various aspects of the patient journey, including communication, emotional support, timely access to care, care coordination, and patient-centered decision-making. The project's data analysis utilized a mixed-methods approach, combining qualitative techniques to identify recurring themes and extract actionable insights and quantitative methods to assess patient satisfaction scores and relevant metrics over time, facilitating the measurement of intervention impact and longitudinal tracking of changes. From the themes we discovered in both the online and in-person patient experience surveys, several key findings emerged that guided us in initiating improvements, including effective communication and information sharing, providing emotional support and empathy, ensuring timely access to care, fostering care coordination and continuity, and promoting patient-centered decision-making. Results: The project yielded substantial positive outcomes, significantly improving patient experiences in the OB/GYN ED. Patient satisfaction levels rose from 62% to a consistent 98%, with notable improvements in satisfaction with care plan information and physician care. Waiting time satisfaction increased from 68% to a steady 97%. The project positively impacted nurses' and midwives' job satisfaction, increasing from 64% to an impressive 94%. Operational metrics displayed positive trends, including a decrease in the "left without being seen" rate from 3% to 1%, the discharge against medical advice rate dropping from 8% to 1%, and the absconded rate reducing from 3% to 0%. These outcomes underscore the project's effectiveness in enhancing both patient and staff experiences in the healthcare setting. Conclusion: The use of a patient experience questionnaire has been substantiated by evidence-based research as an effective tool for improving the patient experience, guiding interventions, and enhancing overall healthcare quality in the OB/GYN ED. The project's interventions have resulted in a more efficient allocation of resources, reduced hospital stays, and minimized unnecessary resource utilization. This, in turn, contributes to cost savings for the healthcare facility.Keywords: patient experience, patient survey, person centered care, quality initiatives
Procedia PDF Downloads 6093 Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital
Authors: Mbonigaba Swale
Abstract:
Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker.Keywords: knowledge based software, management, treatment, diagnosis
Procedia PDF Downloads 6192 The Integration of Digital Humanities into the Sociology of Knowledge Approach to Discourse Analysis
Authors: Gertraud Koch, Teresa Stumpf, Alejandra Tijerina García
Abstract:
Discourse analysis research approaches belong to the central research strategies applied throughout the humanities; they focus on the countless forms and ways digital texts and images shape present-day notions of the world. Despite the constantly growing number of relevant digital, multimodal discourse resources, digital humanities (DH) methods are thus far not systematically developed and accessible for discourse analysis approaches. Specifically, the significance of multimodality and meaning plurality modelling are yet to be sufficiently addressed. In order to address this research gap, the D-WISE project aims to develop a prototypical working environment as digital support for the sociology of knowledge approach to discourse analysis and new IT-analysis approaches for the use of context-oriented embedding representations. Playing an essential role throughout our research endeavor is the constant optimization of hermeneutical methodology in the use of (semi)automated processes and their corresponding epistemological reflection. Among the discourse analyses, the sociology of knowledge approach to discourse analysis is characterised by the reconstructive and accompanying research into the formation of knowledge systems in social negotiation processes. The approach analyses how dominant understandings of a phenomenon develop, i.e., the way they are expressed and consolidated by various actors in specific arenas of discourse until a specific understanding of the phenomenon and its socially accepted structure are established. This article presents insights and initial findings from D-WISE, a joint research project running since 2021 between the Institute of Anthropological Studies in Culture and History and the Language Technology Group of the Department of Informatics at the University of Hamburg. As an interdisciplinary team, we develop central innovations with regard to the availability of relevant DH applications by building up a uniform working environment, which supports the procedure of the sociology of knowledge approach to discourse analysis within open corpora and heterogeneous, multimodal data sources for researchers in the humanities. We are hereby expanding the existing range of DH methods by developing contextualized embeddings for improved modelling of the plurality of meaning and the integrated processing of multimodal data. The alignment of this methodological and technical innovation is based on the epistemological working methods according to grounded theory as a hermeneutic methodology. In order to systematically relate, compare, and reflect the approaches of structural-IT and hermeneutic-interpretative analysis, the discourse analysis is carried out both manually and digitally. Using the example of current discourses on digitization in the healthcare sector and the associated issues regarding data protection, we have manually built an initial data corpus of which the relevant actors and discourse positions are analysed in conventional qualitative discourse analysis. At the same time, we are building an extensive digital corpus on the same topic based on the use and further development of entity-centered research tools such as topic crawlers and automated newsreaders. In addition to the text material, this consists of multimodal sources such as images, video sequences, and apps. In a blended reading process, the data material is filtered, annotated, and finally coded with the help of NLP tools such as dependency parsing, named entity recognition, co-reference resolution, entity linking, sentiment analysis, and other project-specific tools that are being adapted and developed. The coding process is carried out (semi-)automated by programs that propose coding paradigms based on the calculated entities and their relationships. Simultaneously, these can be specifically trained by manual coding in a closed reading process and specified according to the content issues. Overall, this approach enables purely qualitative, fully automated, and semi-automated analyses to be compared and reflected upon.Keywords: entanglement of structural IT and hermeneutic-interpretative analysis, multimodality, plurality of meaning, sociology of knowledge approach to discourse analysis
Procedia PDF Downloads 22991 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 8290 Barbie in India: A Study of Effects of Barbie in Psychological and Social Health
Authors: Suhrita Saha
Abstract:
Barbie is a fashion doll manufactured by the American toy company Mattel Inc and it made debut at the American International Toy Fair in New York in 9 March 1959. From being a fashion doll to a symbol of fetishistic commodification, Barbie has come a long way. A Barbie doll is sold every three seconds across the world, which makes the billion dollar brand the world’s most popular doll for the girls. The 11.5 inch moulded plastic doll has a height of 5 feet 9 inches at 1/6 scale. Her vital statistics have been estimated at 36 inches (chest), 18 inches (waist) and 33 inches (hips). Her weight is permanently set at 110 pounds which would be 35 pounds underweight. Ruth Handler, the creator of Barbie wanted a doll that represented adulthood and allowed children to imagine themselves as teenagers or adults. While Barbie might have been intended to be independent, imaginative and innovative, the physical uniqueness does not confine the doll to the status of a play thing. It is a cultural icon but with far reaching critical implications. The doll is a commodity bearing more social value than practical use value. The way Barbie is produced represents industrialization and commodification of the process of symbolic production. And this symbolic production and consumption is a standardized planned one that produce stereotypical ‘pseudo-individuality’ and suppresses cultural alternatives. Children are being subject to and also arise as subjects in this consumer context. A very gendered, physiologically dissected sexually charged symbolism is imposed upon children (both male and female), childhood, their social worlds, identity, and relationship formation. Barbie is also very popular among Indian children. While the doll is essentially an imaginative representation of the West, it is internalized by the Indian sensibilities. Through observation and questionnaire-based interview within a sample population of adolescent children (primarily female, a few male) and parents (primarily mothers) in Kolkata, an Indian metropolis, the paper puts forth findings of sociological relevance. 1. Barbie creates, recreates, and accentuates already existing divides between the binaries like male- female, fat- thin, sexy- nonsexy, beauty- brain and more. 2. The Indian girl child in her associative process with Barbie wants to be like her and commodifies her own self. The male child also readily accepts this standardized commodification. Definition of beauty is thus based on prejudice and stereotype. 3. Not being able to become Barbie creates health issues both psychological and physiological varying from anorexia to obesity as well as personality disorder. 4. From being a plaything Barbie becomes the game maker. Barbie along with many other forms of simulation further creates a consumer culture and market for all kind of fitness related hyper enchantment and subsequent disillusionment. The construct becomes the reality and the real gets lost in the play world. The paper would thus argue that Barbie from being an innocuous doll transports itself into becoming social construct with long term and irreversible adverse impact.Keywords: barbie, commodification, personality disorder, sterotype
Procedia PDF Downloads 36989 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 40188 The Role of Supply Chain Agility in Improving Manufacturing Resilience
Authors: Maryam Ziaee
Abstract:
This research proposes a new approach and provides an opportunity for manufacturing companies to produce large amounts of products that meet their prospective customers’ tastes, needs, and expectations and simultaneously enable manufacturers to increase their profit. Mass customization is the production of products or services to meet each individual customer’s desires to the greatest possible extent in high quantities and at reasonable prices. This process takes place at different levels such as the customization of goods’ design, assembly, sale, and delivery status, and classifies in several categories. The main focus of this study is on one class of mass customization, called optional customization, in which companies try to provide their customers with as many options as possible to customize their products. These options could range from the design phase to the manufacturing phase, or even methods of delivery. Mass customization values customers’ tastes, but it is only one side of clients’ satisfaction; on the other side is companies’ fast responsiveness delivery. It brings the concept of agility, which is the ability of a company to respond rapidly to changes in volatile markets in terms of volume and variety. Indeed, mass customization is not effectively feasible without integrating the concept of agility. To gain the customers’ satisfaction, the companies need to be quick in responding to their customers’ demands, thus highlighting the significance of agility. This research offers a different method that successfully integrates mass customization and fast production in manufacturing industries. This research is built upon the hypothesis that the success key to being agile in mass customization is to forecast demand, cooperate with suppliers, and control inventory. Therefore, the significance of the supply chain (SC) is more pertinent when it comes to this stage. Since SC behavior is dynamic and its behavior changes constantly, companies have to apply one of the predicting techniques to identify the changes associated with SC behavior to be able to respond properly to any unwelcome events. System dynamics utilized in this research is a simulation approach to provide a mathematical model among different variables to understand, control, and forecast SC behavior. The final stage is delayed differentiation, the production strategy considered in this research. In this approach, the main platform of products is produced and stocked and when the company receives an order from a customer, a specific customized feature is assigned to this platform and the customized products will be created. The main research question is to what extent applying system dynamics for the prediction of SC behavior improves the agility of mass customization. This research is built upon a qualitative approach to bring about richer, deeper, and more revealing results. The data is collected through interviews and is analyzed through NVivo software. This proposed model offers numerous benefits such as reduction in the number of product inventories and their storage costs, improvement in the resilience of companies’ responses to their clients’ needs and tastes, the increase of profits, and the optimization of productivity with the minimum level of lost sales.Keywords: agility, manufacturing, resilience, supply chain
Procedia PDF Downloads 9487 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings
Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun
Abstract:
Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building
Procedia PDF Downloads 17686 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran
Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam
Abstract:
Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.Keywords: erosion plot, rainfall simulator, soil properties, surface flow
Procedia PDF Downloads 7285 Optimization of the Performance of a Solar Concentrator System with a Cavity Receiver Using the Genetic Algorithm
Authors: Foozhan Gharehkhani
Abstract:
The use of solar energy as a sustainable renewable energy source has gained significant attention in recent years. Solar concentrating systems (CSP), which direct solar radiation onto a receiver, are an effective means of producing high-temperature thermal energy. Cavity receivers, known for their high thermal efficiency and reduced heat losses, are particularly noteworthy in these systems. Optimizing their design can enhance energy efficiency and reduce costs. This study leverages the genetic algorithm, a powerful optimization tool inspired by natural evolution, to optimize the performance of a solar concentrator system with a cavity receiver, aiming for a more efficient and cost-effective design. In this study, a system consisting of a solar concentrator and a cavity receiver was analyzed. The concentrator was designed as a parabolic dish, and the receiver had a cylindrical cavity with a helical structure. The primary parameters were defined as the cavity diameter (D), the receiver height (h), and the helical pipe diameter (d). Initially, the system was optimized to achieve the maximum heat flux, and the optimal parameter values along with the maximum heat flux were obtained. Subsequently, a multi-objective optimization approach was applied, aiming to maximize the heat flux while minimizing the system construction cost. The optimization process was conducted using the genetic algorithm implemented in MATLAB with precise execution. The results of this study revealed that the optimal dimensions of the receiver, including the cavity diameter (D), receiver height (h), and helical pipe diameter (d), were determined to be 0.142 m, 0.1385 m, and 0.011 m, respectively. This optimization resulted in improvements of 3% in the cavity diameter, 8% in the height, and 5% in the helical pipe diameter. Furthermore, the results indicated that the primary focus of this research was the accurate thermal modeling of the solar collection system. The simulations and the obtained results demonstrated that the optimization applied to this system maximized its thermal performance and elevated its energy efficiency to a desirable level. Moreover, this study successfully modeled and controlled effective temperature variations at different angles of solar irradiation, highlighting significant improvements in system efficiency. The significance of this research lies in leveraging solar energy as one of the prominent renewable energy sources, playing a key role in replacing fossil fuels. Considering the environmental and economic challenges associated with the excessive use of fossil resources—such as increased greenhouse gas emissions, environmental degradation, and the depletion of fossil energy reserves—developing technologies related to renewable energy has become a vital priority. Among these, solar concentrating systems, capable of achieving high temperatures, are particularly important for industrial and heating applications. This research aims to optimize the performance of such systems through precise design and simulation, making a significant contribution to the advancement of advanced technologies and the efficient utilization of solar energy in Iran, thereby addressing the country's future energy needs effectively.Keywords: cavity receiver, genetic algorithm, optimization, solar concentrator system performance
Procedia PDF Downloads 1384 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 8483 Potential for Massive Use of Biodiesel for Automotive in Italy
Authors: Domenico Carmelo Mongelli
Abstract:
The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.Keywords: biodiesel, economy, engines, environment
Procedia PDF Downloads 7982 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 21581 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles
Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo
Abstract:
Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.Keywords: HRRP, NCTI, simulated/synthetic database, SVD
Procedia PDF Downloads 35580 Covariate-Adjusted Response-Adaptive Designs for Semi-Parametric Survival Responses
Authors: Ayon Mukherjee
Abstract:
Covariate-adjusted response-adaptive (CARA) designs use the available responses to skew the treatment allocation in a clinical trial in towards treatment found at an interim stage to be best for a given patient's covariate profile. Extensive research has been done on various aspects of CARA designs with the patient responses assumed to follow a parametric model. However, ranges of application for such designs are limited in real-life clinical trials where the responses infrequently fit a certain parametric form. On the other hand, robust estimates for the covariate-adjusted treatment effects are obtained from the parametric assumption. To balance these two requirements, designs are developed which are free from distributional assumptions about the survival responses, relying only on the assumption of proportional hazards for the two treatment arms. The proposed designs are developed by deriving two types of optimum allocation designs, and also by using a distribution function to link the past allocation, covariate and response histories to the present allocation. The optimal designs are based on biased coin procedures, with a bias towards the better treatment arm. These are the doubly-adaptive biased coin design (DBCD) and the efficient randomized adaptive design (ERADE). The treatment allocation proportions for these designs converge to the expected target values, which are functions of the Cox regression coefficients that are estimated sequentially. These expected target values are derived based on constrained optimization problems and are updated as information accrues with sequential arrival of patients. The design based on the link function is derived using the distribution function of a probit model whose parameters are adjusted based on the covariate profile of the incoming patient. To apply such designs, the treatment allocation probabilities are sequentially modified based on the treatment allocation history, response history, previous patients’ covariates and also the covariates of the incoming patient. Given these information, an expression is obtained for the conditional probability of a patient allocation to a treatment arm. Based on simulation studies, it is found that the ERADE is preferable to the DBCD when the main aim is to minimize the variance of the observed allocation proportion and to maximize the power of the Wald test for a treatment difference. However, the former procedure being discrete tends to be slower in converging towards the expected target allocation proportion. The link function based design achieves the highest skewness of patient allocation to the best treatment arm and thus ethically is the best design. Other comparative merits of the proposed designs have been highlighted and their preferred areas of application are discussed. It is concluded that the proposed CARA designs can be considered as suitable alternatives to the traditional balanced randomization designs in survival trials in terms of the power of the Wald test, provided that response data are available during the recruitment phase of the trial to enable adaptations to the designs. Moreover, the proposed designs enable more patients to get treated with the better treatment during the trial thus making the designs more ethically attractive to the patients. An existing clinical trial has been redesigned using these methods.Keywords: censored response, Cox regression, efficiency, ethics, optimal allocation, power, variability
Procedia PDF Downloads 16779 A Case Study on the Estimation of Design Discharge for Flood Management in Lower Damodar Region, India
Authors: Susmita Ghosh
Abstract:
Catchment area of Damodar River, India experiences seasonal rains due to the south-west monsoon every year and depending upon the intensity of the storms, floods occur. During the monsoon season, the rainfall in the area is mainly due to active monsoon conditions. The upstream reach of Damodar river system has five dams store the water for utilization for various purposes viz, irrigation, hydro-power generation, municipal supplies and last but not the least flood moderation. But, in the downstream reach of Damodar River, known as Lower Damodar region, is severely and frequently suffering from flood due to heavy monsoon rainfall and also release from upstream reservoirs. Therefore, an effective flood management study is required to know in depth the nature and extent of flood, water logging, and erosion related problems, affected area, and damages in the Lower Damodar region, by conducting mathematical model study. The design flood or discharge is needed to decide to assign the respective model for getting several scenarios from the simulation runs. The ultimate aim is to achieve a sustainable flood management scheme from the several alternatives. there are various methods for estimating flood discharges to be carried through the rivers and their tributaries for quick drainage from inundated areas due to drainage congestion and excess rainfall. In the present study, the flood frequency analysis is performed to decide the design flood discharge of the study area. This, on the other hand, has limitations in respect of availability of long peak flood data record for determining long type of probability density function correctly. If sufficient past records are available, the maximum flood on a river with a given frequency can safely be determined. The floods of different frequency for the Damodar has been calculated by five candidate distributions i.e., generalized extreme value, extreme value-I, Pearson type III, Log Pearson and normal. Annual peak discharge series are available at Durgapur barrage for the period of 1979 to 2013 (35 years). The available series are subjected to frequency analysis. The primary objective of the flood frequency analysis is to relate the magnitude of extreme events to their frequencies of occurrence through the use of probability distributions. The design flood for return periods of 10, 15 and 25 years return period at Durgapur barrage are estimated by flood frequency method. It is necessary to develop flood hydrographs for the above floods to facilitate the mathematical model studies to find the depth and extent of inundation etc. Null hypothesis that the distributions fit the data at 95% confidence is checked with goodness of fit test, i.e., Chi Square Test. It is revealed from the goodness of fit test that the all five distributions do show a good fit on the sample population and is therefore accepted. However, it is seen that there is considerable variation in the estimation of frequency flood. It is therefore considered prudent to average out the results of these five distributions for required frequencies. The inundated area from past data is well matched using this flood.Keywords: design discharge, flood frequency, goodness of fit, sustainable flood management
Procedia PDF Downloads 20478 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 13877 Virtual Reality Applications for Building Indoor Engineering: Circulation Way-Finding
Authors: Atefeh Omidkhah Kharashtomi, Rasoul Hedayat Nejad, Saeed Bakhtiyari
Abstract:
Circulation paths and indoor connection network of the building play an important role both in the daily operation of the building and during evacuation in emergency situations. The degree of legibility of the paths for navigation inside the building has a deep connection with the perceptive and cognitive system of human, and the way the surrounding environment is being perceived. Human perception of the space is based on the sensory systems in a three-dimensional environment, and non-linearly, so it is necessary to avoid reducing its representations in architectural design as a two-dimensional and linear issue. Today, the advances in the field of virtual reality (VR) technology have led to various applications, and architecture and building science can benefit greatly from these capabilities. Especially in cases where the design solution requires a detailed and complete understanding of the human perception of the environment and the behavioral response, special attention to VR technologies could be a priority. Way-finding in the indoor circulation network is a proper example for such application. Success in way-finding could be achieved if human perception of the route and the behavioral reaction have been considered in advance and reflected in the architectural design. This paper discusses the VR technology applications for the way-finding improvements in indoor engineering of the building. In a systematic review, with a database consisting of numerous studies, firstly, four categories for VR applications for circulation way-finding have been identified: 1) data collection of key parameters, 2) comparison of the effect of each parameter in virtual environment versus real world (in order to improve the design), 3) comparing experiment results in the application of different VR devices/ methods with each other or with the results of building simulation, and 4) training and planning. Since the costs of technical equipment and knowledge required to use VR tools lead to the limitation of its use for all design projects, priority buildings for the use of VR during design are introduced based on case-studies analysis. The results indicate that VR technology provides opportunities for designers to solve complex buildings design challenges in an effective and efficient manner. Then environmental parameters and the architecture of the circulation routes (indicators such as route configuration, topology, signs, structural and non-structural components, etc.) and the characteristics of each (metrics such as dimensions, proportions, color, transparency, texture, etc.) are classified for the VR way-finding experiments. Then, according to human behavior and reaction in the movement-related issues, the necessity of scenario-based and experiment design for using VR technology to improve the design and receive feedback from the test participants has been described. The parameters related to the scenario design are presented in a flowchart in the form of test design, data determination and interpretation, recording results, analysis, errors, validation and reporting. Also, the experiment environment design is discussed for equipment selection according to the scenario, parameters under study as well as creating the sense of illusion in the terms of place illusion, plausibility and illusion of body ownership.Keywords: virtual reality (VR), way-finding, indoor, circulation, design
Procedia PDF Downloads 7776 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue
Authors: Linmin Zhang
Abstract:
Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure
Procedia PDF Downloads 3575 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection
Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda
Abstract:
In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards
Procedia PDF Downloads 14174 Earthquake Preparedness of School Community and E-PreS Project
Authors: A. Kourou, A. Ioakeimidou, S. Hadjiefthymiades, V. Abramea
Abstract:
During the last decades, the task of engaging governments, communities and citizens to reduce risk and vulnerability of the populations has made variable progress. Experience has demonstrated that lack of awareness, education and preparedness may result in significant material and other losses both on the onset of the disaster. Schools play a vital role in the community and are important elements of values and culture of the society. A proper school education not only teaches children, but also is a key factor in the promotion of a safety culture into the wider community. In Greece School Earthquake Safety Initiative has been undertaken by Earthquake Planning and Protection Ogranization with specific actions (seminars, lectures, guidelines, educational material, campaigns, national or EU projects, drills etc.). The objective of this initiative is to develop disaster-resilient school communities through awareness, self-help, cooperation and education. School preparedness requires the participation of Principals, teachers, students, parents, and competent authorities. Preparation and earthquake readiness involves: a) learning what should be done before, during, and after earthquake; b) doing or preparing to do these things now, before the next earthquake; and c) developing teachers’ and students’ skills to cope efficiently in case of an earthquake. In the above given framework this paper presents the results of a survey aimed to identify the level of education and preparedness of school community in Greece. More specifically, the survey questionnaire investigates issues regarding earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans at elementary and secondary schools. The questionnaires were administered to Principals and teachers from different regions of the country that attend the EPPO national training project 'Earthquake Safety at Schools'. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self protective actions b) existence of emergency planning at home and c) existence of emergency planning at school (hazard mitigation actions, evacuation plan, and performance of drills). Survey results revealed that a high percentage of teachers have taken the appropriate preparedness measures concerning non-structural hazards at schools, emergency school plan and simulation drills every year. In order to improve the action-planning for ongoing school disaster risk reduction, the implementation of earthquake drills, the involvement of students with disabilities and the evaluation of school emergency plans, EPPO participates in E-PreS project. The main objective of this project is to create smart tools which define, simulate and evaluate all hazards emergency steps customized to the unique district and school. The project comes up with a holistic methodology using real-time evaluation involving different categories of actors, districts, steps and metrics. The project is supported by EU Civil Protection Financial Instrument with a duration of two years. Coordinator is the Kapodistrian University of Athens and partners are from four countries; Greece, Italy, Romania and Bulgaria.Keywords: drills, earthquake, emergency plans, E-PreS project
Procedia PDF Downloads 23873 The Temperature Degradation Process of Siloxane Polymeric Coatings
Authors: Andrzej Szewczak
Abstract:
Study of the effect of high temperatures on polymer coatings represents an important field of research of their properties. Polymers, as materials with numerous features (chemical resistance, ease of processing and recycling, corrosion resistance, low density and weight) are currently the most widely used modern building materials, among others in the resin concrete, plastic parts, and hydrophobic coatings. Unfortunately, the polymers have also disadvantages, one of which decides about their usage - low resistance to high temperatures and brittleness. This applies in particular thin and flexible polymeric coatings applied to other materials, such a steel and concrete, which degrade under varying thermal conditions. Research about improvement of this state includes methods of modification of the polymer composition, structure, conditioning conditions, and the polymerization reaction. At present, ways are sought to reflect the actual environmental conditions, in which the coating will be operating after it has been applied to other material. These studies are difficult because of the need for adopting a proper model of the polymer operation and the determination of phenomena occurring at the time of temperature fluctuations. For this reason, alternative methods are being developed, taking into account the rapid modeling and the simulation of the actual operating conditions of polymeric coating’s materials in real conditions. The nature of a duration is typical for the temperature influence in the environment. Studies typically involve the measurement of variation one or more physical and mechanical properties of such coating in time. Based on these results it is possible to determine the effects of temperature loading and develop methods affecting in the improvement of coatings’ properties. This paper contains a description of the stability studies of silicone coatings deposited on the surface of a ceramic brick. The brick’s surface was hydrophobized by two types of inorganic polymers: nano-polymer preparation based on dialkyl siloxanes (Series 1 - 5) and an aqueous solution of the silicon (series 6 - 10). In order to enhance the stability of the film formed on the brick’s surface and immunize it to variable temperature and humidity loading, the nano silica was added to the polymer. The right combination of the polymer liquid phase and the solid phase of nano silica was obtained by disintegration of the mixture by the sonification. The changes of viscosity and surface tension of polymers were defined, which are the basic rheological parameters affecting the state and the durability of the polymer coating. The coatings created on the brick’s surfaces were then subjected to a temperature loading of 100° C and moisture by total immersion in water, in order to determine any water absorption changes caused by damages and the degradation of the polymer film. The effect of moisture and temperature was determined by measurement (at specified number of cycles) of changes in the surface hardness (using a Vickers’ method) and the absorption of individual samples. As a result, on the basis of the obtained results, the degradation process of polymer coatings related to their durability changes in time was determined.Keywords: silicones, siloxanes, surface hardness, temperature, water absorption
Procedia PDF Downloads 24572 Developing Telehealth-Focused Advanced Practice Nurse Educational Partnerships
Authors: Shelley Y. Hawkins
Abstract:
Introduction/Background: As technology has grown exponentially in healthcare, nurse educators must prepare Advanced Practice Registered Nurse (APRN) graduates with the knowledge and skills in information systems/technology to support and improve patient care and health care systems. APRN’s are expected to lead in caring for populations who lack accessibility and availability through the use of technology, specifically telehealth. The capacity to effectively and efficiently use technology in patient care delivery is clearly delineated in the American Association of Colleges of Nursing (AACN) Doctor of Nursing Practice (DNP) and Master of Science in Nursing (MSN) Essentials. However, APRN’s have minimal, or no, exposure to formalized telehealth education and lack necessary technical skills needed to incorporate telehealth into their patient care. APRN’s must successfully master the technology using telehealth/telemedicine, electronic health records, health information technology, and clinical decision support systems to advance health. Furthermore, APRN’s must be prepared to lead the coordination and collaboration with other healthcare providers in their use and application. Aim/Goal/Purpose: The purpose of this presentation is to establish and operationalize telehealth-focused educational partnerships between one University School of Nursing and two health care systems in order to enhance the preparation of APRN NP students for practice, teaching, and/or scholarly endeavors. Methods: The proposed project was initially presented by the project director to selected multidisciplinary stakeholders including leadership, home telehealth personnel, primary care providers, and decision support systems within two major health care systems to garner their support for acceptance and implementation. Concurrently, backing was obtained from key university-affiliated colleagues including the Director of Simulation and Innovative Learning Lab and Coordinator of the Health Care Informatics Program. Technology experts skilled in design and production in web applications and electronic modules were secured from two local based technology companies. Results: Two telehealth-focused APRN Program academic/practice partnerships have been established. Students have opportunities to engage in clinically based telehealth experiences focused on: (1) providing patient care while incorporating various technology with a specific emphasis on telehealth; (2) conducting research and/or evidence-based practice projects in order to further develop the scientific foundation regarding incorporation of telehealth with patient care; and (3) participating in the production of patient-level educational materials related to specific topical areas. Conclusions: Evidence-based APRN student telehealth clinical experiences will assist in preparing graduates who can effectively incorporate telehealth into their clinical practice. Greater access for diverse populations will be available as a result of the telehealth service model as well as better care and better outcomes at lower costs. Furthermore, APRN’s will provide the necessary leadership and coordination through interprofessional practice by transforming health care through new innovative care models using information systems and technology.Keywords: academic/practice partnerships, advanced practice nursing, nursing education, telehealth
Procedia PDF Downloads 24671 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak
Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi
Abstract:
This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak
Procedia PDF Downloads 15770 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 15269 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System
Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar
Abstract:
Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel
Procedia PDF Downloads 13868 Numerical Investigations of Unstable Pressure Fluctuations Behavior in a Side Channel Pump
Authors: Desmond Appiah, Fan Zhang, Shouqi Yuan, Wei Xueyuan, Stephen N. Asomani
Abstract:
The side channel pump has distinctive hydraulic performance characteristics over other vane pumps because of its generation of high pressure heads in only one impeller revolution. Hence, there is soaring utilization and application in the fields of petrochemical, food processing fields, automotive and aerospace fuel pumping where high heads are required at low flows. The side channel pump is characterized by unstable flow because after fluid flows into the impeller passage, it moves into the side channel and comes back to the impeller again and then moves to the next circulation. Consequently, the flow leaves the side channel pump following a helical path. However, the pressure fluctuation exhibited in the flow greatly contributes to the unwanted noise and vibration which is associated with the flow. In this paper, a side channel pump prototype was examined thoroughly through numerical calculations based on SST k-ω turbulence model to ascertain the pressure fluctuation behavior. The pressure fluctuation intensity of the 3D unstable flow dynamics were carefully investigated under different working conditions 0.8QBEP, 1.0 QBEP and 1.2QBEP. The results showed that the pressure fluctuation distribution around the pressure side of the blade is greater than the suction side at the impeller and side channel interface (z=0) for all three operating conditions. Part-load condition 0.8QBEP recorded the highest pressure fluctuation distribution because of the high circulation velocity thus causing an intense exchanged flow between the impeller and side channel. Time and frequency domains spectra of the pressure fluctuation patterns in the impeller and the side channel were also analyzed under the best efficiency point value, QBEP using the solution from the numerical calculations. It was observed from the time-domain analysis that the pressure fluctuation characteristics in the impeller flow passage increased steadily until the flow reached the interrupter which separates low-pressure at the inflow from high pressure at the outflow. The pressure fluctuation amplitudes in the frequency domain spectrum at the different monitoring points depicted a gentle decreasing trend of the pressure amplitudes which was common among the operating conditions. The frequency domain also revealed that the main excitation frequencies occurred at 600Hz, 1200Hz, and 1800Hz and continued in the integers of the rotating shaft frequency. Also, the mass flow exchange plots indicated that the side channel pump is characterized with many vortex flows. Operating conditions 0.8QBEP, 1.0 QBEP depicted less and similar vortex flow while 1.2Q recorded many vortex flows around the inflow, middle and outflow regions. The results of the numerical calculations were finally verified experimentally. The performance characteristics curves from the simulated results showed that 0.8QBEP working condition recorded a head increase of 43.03% and efficiency decrease of 6.73% compared to 1.0QBEP. It can be concluded that for industrial applications where the high heads are mostly required, the side channel pump can be designed to operate at part-load conditions. This paper can serve as a source of information in order to optimize a reliable performance and widen the applications of the side channel pumps.Keywords: exchanged flow, pressure fluctuation, numerical simulation, side channel pump
Procedia PDF Downloads 13767 MANIFEST-2, a Global, Phase 3, Randomized, Double-Blind, Active-Control Study of Pelabresib (CPI-0610) and Ruxolitinib vs. Placebo and Ruxolitinib in JAK Inhibitor-Naïve Myelofibrosis Patients
Authors: Claire Harrison, Raajit K. Rampal, Vikas Gupta, Srdan Verstovsek, Moshe Talpaz, Jean-Jacques Kiladjian, Ruben Mesa, Andrew Kuykendall, Alessandro Vannucchi, Francesca Palandri, Sebastian Grosicki, Timothy Devos, Eric Jourdan, Marielle J. Wondergem, Haifa Kathrin Al-Ali, Veronika Buxhofer-Ausch, Alberto Alvarez-Larrán, Sanjay Akhani, Rafael Muñoz-Carerras, Yury Sheykin, Gozde Colak, Morgan Harris, John Mascarenhas
Abstract:
Myelofibrosis (MF) is characterized by bone marrow fibrosis, anemia, splenomegaly and constitutional symptoms. Progressive bone marrow fibrosis results from aberrant megakaryopoeisis and expression of proinflammatory cytokines, both of which are heavily influenced by bromodomain and extraterminal domain (BET)-mediated gene regulation and lead to myeloproliferation and cytopenias. Pelabresib (CPI-0610) is an oral small-molecule investigational inhibitor of BET protein bromodomains currently being developed for the treatment of patients with MF. It is designed to downregulate BET target genes and modify nuclear factor kappa B (NF-κB) signaling. MANIFEST-2 was initiated based on data from Arm 3 of the ongoing Phase 2 MANIFEST study (NCT02158858), which is evaluating the combination of pelabresib and ruxolitinib in Janus kinase inhibitor (JAKi) treatment-naïve patients with MF. Primary endpoint analyses showed splenic and symptom responses in 68% and 56% of 84 enrolled patients, respectively. MANIFEST-2 (NCT04603495) is a global, Phase 3, randomized, double-blind, active-control study of pelabresib and ruxolitinib versus placebo and ruxolitinib in JAKi treatment-naïve patients with primary MF, post-polycythemia vera MF or post-essential thrombocythemia MF. The aim of this study is to evaluate the efficacy and safety of pelabresib in combination with ruxolitinib. Here we report updates from a recent protocol amendment. The MANIFEST-2 study schema is shown in Figure 1. Key eligibility criteria include a Dynamic International Prognostic Scoring System (DIPSS) score of Intermediate-1 or higher, platelet count ≥100 × 10^9/L, spleen volume ≥450 cc by computerized tomography or magnetic resonance imaging, ≥2 symptoms with an average score ≥3 or a Total Symptom Score (TSS) of ≥10 using the Myelofibrosis Symptom Assessment Form v4.0, peripheral blast count <5% and Eastern Cooperative Oncology Group performance status ≤2. Patient randomization will be stratified by DIPSS risk category (Intermediate-1 vs Intermediate-2 vs High), platelet count (>200 × 10^9/L vs 100–200 × 10^9/L) and spleen volume (≥1800 cm^3 vs <1800 cm^3). Double-blind treatment (pelabresib or matching placebo) will be administered once daily for 14 consecutive days, followed by a 7 day break, which is considered one cycle of treatment. Ruxolitinib will be administered twice daily for all 21 days of the cycle. The primary endpoint is SVR35 response (≥35% reduction in spleen volume from baseline) at Week 24, and the key secondary endpoint is TSS50 response (≥50% reduction in TSS from baseline) at Week 24. Other secondary endpoints include safety, pharmacokinetics, changes in bone marrow fibrosis, duration of SVR35 response, duration of TSS50 response, progression-free survival, overall survival, conversion from transfusion dependence to independence and rate of red blood cell transfusion for the first 24 weeks. Study recruitment is ongoing; 400 patients (200 per arm) from North America, Europe, Asia and Australia will be enrolled. The study opened for enrollment in November 2020. MANIFEST-2 was initiated based on data from the ongoing Phase 2 MANIFEST study with the aim of assessing the efficacy and safety of pelabresib and ruxolitinib in JAKi treatment-naïve patients with MF. MANIFEST-2 is currently open for enrollment.Keywords: CPI-0610, JAKi treatment-naïve, MANIFEST-2, myelofibrosis, pelabresib
Procedia PDF Downloads 20966 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.Keywords: clogging, double layer porous asphalt, infiltration capacity, rainfall intensity
Procedia PDF Downloads 49465 The Monitor for Neutron Dose in Hadrontherapy Project: Secondary Neutron Measurement in Particle Therapy
Authors: V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, G. Traini, M. Marafini
Abstract:
The particle therapy (PT) is a very modern technique of non invasive radiotherapy mainly devoted to the treatment of tumours untreatable with surgery or conventional radiotherapy, because localised closely to organ at risk (OaR). Nowadays, PT is available in about 55 centres in the word and only the 20\% of them are able to treat with carbon ion beam. However, the efficiency of the ion-beam treatments is so impressive that many new centres are in construction. The interest in this powerful technology lies to the main characteristic of PT: the high irradiation precision and conformity of the dose released to the tumour with the simultaneous preservation of the adjacent healthy tissue. However, the beam interactions with the patient produce a large component of secondary particles whose additional dose has to be taken into account during the definition of the treatment planning. Despite, the largest fraction of the dose is released to the tumour volume, a non-negligible amount is deposed in other body regions, mainly due to the scattering and nuclear interactions of the neutrons within the patient body. One of the main concerns in PT treatments is the possible occurrence of secondary malignant neoplasm (SMN). While SMNs can be developed up to decades after the treatments, their incidence impacts directly life quality of the cancer survivors, in particular in pediatric patients. Dedicated Treatment Planning Systems (TPS) are used to predict the normal tissue toxicity including the risk of late complications induced by the additional dose released by secondary neutrons. However, no precise measurement of secondary neutrons flux is available, as well as their energy and angular distributions: an accurate characterization is needed in order to improve TPS and reduce safety margins. The project MONDO (MOnitor for Neutron Dose in hadrOntherapy) is devoted to the construction of a secondary neutron tracker tailored to the characterization of that secondary neutron component. The detector, based on the tracking of the recoil protons produced in double-elastic scattering interactions, is a matrix of thin scintillating fibres, arranged in layer x-y oriented. The final size of the object is 10 x 10 x 20 cm3 (squared 250µm scint. fibres, double cladding). The readout of the fibres is carried out with a dedicated SPAD Array Sensor (SBAM) realised in CMOS technology by FBK (Fondazione Bruno Kessler). The detector is under development as well as the SBAM sensor and it is expected to be fully constructed for the end of the year. MONDO will make data tacking campaigns at the TIFPA Proton Therapy Center of Trento, at the CNAO (Pavia) and at HIT (Heidelberg) with carbon ion in order to characterize the neutron component and predict the additional dose delivered on the patients with much more precision and to drastically reduce the actual safety margins. Preliminary measurements with charged particles beams and MonteCarlo FLUKA simulation will be presented.Keywords: secondary neutrons, particle therapy, tracking detector, elastic scattering
Procedia PDF Downloads 228