Search results for: chemical processing facility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8349

Search results for: chemical processing facility

219 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia

Authors: Hanna Mamo Ergando

Abstract:

Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.

Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities

Procedia PDF Downloads 158
218 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 219
217 Rapid Atmospheric Pressure Photoionization-Mass Spectrometry (APPI-MS) Method for the Detection of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans in Real Environmental Samples Collected within the Vicinity of Industrial Incinerators

Authors: M. Amo, A. Alvaro, A. Astudillo, R. Mc Culloch, J. C. del Castillo, M. Gómez, J. M. Martín

Abstract:

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) of course comprise a range of highly toxic compounds that may exist as particulates within the air or accumulate within water supplies, soil, or vegetation. They may be created either ubiquitously or naturally within the environment as a product of forest fires or volcanic eruptions. It is only since the industrial revolution, however, that it has become necessary to closely monitor their generation as a byproduct of manufacturing/combustion processes, in an effort to mitigate widespread contamination events. Of course, the environmental concentrations of these toxins are expected to be extremely low, therefore highly sensitive and accurate methods are required for their determination. Since ionization of non-polar compounds through electrospray and APCI is difficult and inefficient, we evaluate the performance of a novel low-flow Atmospheric Pressure Photoionization (APPI) source for the trace detection of various dioxins and furans using rapid Mass Spectrometry workflows. Air, soil and biota (vegetable matter) samples were collected monthly during one year from various locations within the vicinity of an industrial incinerator in Spain. Analytes were extracted and concentrated using soxhlet extraction in toluene and concentrated by rotavapor and nitrogen flow. Various ionization methods as electrospray (ES) and atmospheric pressure chemical ionization (APCI) were evaluated, however, only the low-flow APPI source was capable of providing the necessary performance, in terms of sensitivity, required for detecting all targeted analytes. In total, 10 analytes including 2,3,7,8-tetrachlorodibenzodioxin (TCDD) were detected and characterized using the APPI-MS method. Both PCDDs and PCFDs were detected most efficiently in negative ionization mode. The most abundant ion always corresponded to the loss of a chlorine and addition of an oxygen, yielding [M-Cl+O]- ions. MRM methods were created in order to provide selectivity for each analyte. No chromatographic separation was employed; however, matrix effects were determined to have a negligible impact on analyte signals. Triple Quadrupole Mass Spectrometry was chosen because of its unique potential for high sensitivity and selectivity. The mass spectrometer used was a Sciex´s Qtrap3200 working in negative Multi Reacting Monitoring Mode (MRM). Typically mass detection limits were determined to be near the 1-pg level. The APPI-MS2 technology applied to the detection of PCDD/Fs allows fast and reliable atmospheric analysis, minimizing considerably operational times and costs, with respect other technologies available. In addition, the limit of detection can be easily improved using a more sensitive mass spectrometer since the background in the analysis channel is very low. The APPI developed by SEADM allows polar and non-polar compounds ionization with high efficiency and repeatability.

Keywords: atmospheric pressure photoionization-mass spectrometry (APPI-MS), dioxin, furan, incinerator

Procedia PDF Downloads 185
216 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 220
215 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission

Authors: Alex B. Cusick

Abstract:

The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.

Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions

Procedia PDF Downloads 154
214 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies

Authors: LouAnne Boyd

Abstract:

From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.

Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology

Procedia PDF Downloads 47
213 Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity

Authors: M. Koksal, T. Ozyazici, E. Gurdal, M. Yarım, E. Demirpolat, M. B. Y. Aycan

Abstract:

The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157).

Keywords: cytotoxicity, hexahydropyrimidine, piperazine, sulphorhodamine B assay

Procedia PDF Downloads 135
212 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization

Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo

Abstract:

Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.

Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy

Procedia PDF Downloads 129
211 The Product Innovation Using Nutraceutical Delivery System on Improving Growth Performance of Broiler

Authors: Kitti Supchukun, Kris Angkanaporn, Teerapong Yata

Abstract:

The product innovation using a nutraceutical delivery system on improving the growth performance of broilers is the product planning and development to solve the antibiotics banning policy incurred in the local and global livestock production system. Restricting the use of antibiotics can reduce the quality of chicken meat and increase pathogenic bacterial contamination. Although other alternatives were used to replace antibiotics, the efficacy was inconsistent, reflecting on low chicken growth performance and contaminated products. The product innovation aims to effectively deliver the selected active ingredients into the body. This product is tested on the pharmaceutical lab scale and on the farm-scale for market feasibility in order to create product innovation using the nutraceutical delivery system model. The model establishes the product standardization and traceable quality control process for farmers. The study is performed using mixed methods. Starting with a qualitative method to find the farmers' (consumers) demands and the product standard, then the researcher used the quantitative research method to develop and conclude the findings regarding the acceptance of the technology and product performance. The survey has been sent to different organizations by random sampling among the entrepreneur’s population including integrated broiler farm, broiler farm, and other related organizations. The mixed-method results, both qualitative and quantitative, verify the user and lead users' demands since they provide information about the industry standard, technology preference, developing the right product according to the market, and solutions for the industry problems. The product innovation selected nutraceutical ingredients that can solve the following problems in livestock; bactericidal, anti-inflammation, gut health, antioxidant. The combinations of the selected nutraceutical and nanostructured lipid carriers (NLC) technology aim to improve chemical and pharmaceutical components by changing the structure of active ingredients into nanoparticle, which will be released in the targeted location with accurate concentration. The active ingredients in nanoparticle form are more stable, elicit antibacterial activity against pathogenic Salmonella spp and E.coli, balance gut health, have antioxidant and anti-inflammation activity. The experiment results have proven that the nutraceuticals have an antioxidant and antibacterial activity which also increases the average daily gain (ADG), reduces feed conversion ratio (FCR). The results also show a significant impact on the higher European Performance Index that can increase the farmers' profit when exporting. The product innovation will be tested in technology acceptance management methods from farmers and industry. The production of broiler and commercialization analyses are useful to reduce the importation of animal supplements. Most importantly, product innovation is protected by intellectual property.

Keywords: nutraceutical, nano structure lipid carrier, anti-microbial drug resistance, broiler, Salmonella

Procedia PDF Downloads 148
210 Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications

Authors: Ife Elegbeleye, Nnditshedzeni Eric, Regina Maphanga, Femi Elegbeleye, Femi Agunbiade

Abstract:

The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups.

Keywords: renewable energy resource, solar energy, dye sensitized solar cells, polyene-diphenylaniline organic chromophores

Procedia PDF Downloads 83
209 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate

Authors: Syfur Rahman, Mohammad J. Khattak

Abstract:

Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.

Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash

Procedia PDF Downloads 119
208 Hydrogen Purity: Developing Low-Level Sulphur Speciation Measurement Capability

Authors: Sam Bartlett, Thomas Bacquart, Arul Murugan, Abigail Morris

Abstract:

Fuel cell electric vehicles provide the potential to decarbonise road transport, create new economic opportunities, diversify national energy supply, and significantly reduce the environmental impacts of road transport. A potential issue, however, is that the catalyst used at the fuel cell cathode is susceptible to degradation by impurities, especially sulphur-containing compounds. A recent European Directive (2014/94/EU) stipulates that, from November 2017, all hydrogen provided to fuel cell vehicles in Europe must comply with the hydrogen purity specifications listed in ISO 14687-2; this includes reactive and toxic chemicals such as ammonia and total sulphur-containing compounds. This requirement poses great analytical challenges due to the instability of some of these compounds in calibration gas standards at relatively low amount fractions and the difficulty associated with undertaking measurements of groups of compounds rather than individual compounds. Without the available reference materials and analytical infrastructure, hydrogen refuelling stations will not be able to demonstrate compliance to the ISO 14687 specifications. The hydrogen purity laboratory at NPL provides world leading, accredited purity measurements to allow hydrogen refuelling stations to evidence compliance to ISO 14687. Utilising state-of-the-art methods that have been developed by NPL’s hydrogen purity laboratory, including a novel method for measuring total sulphur compounds at 4 nmol/mol and a hydrogen impurity enrichment device, we provide the capabilities necessary to achieve these goals. An overview of these capabilities will be given in this paper. As part of the EMPIR Hydrogen co-normative project ‘Metrology for sustainable hydrogen energy applications’, NPL are developing a validated analytical methodology for the measurement of speciated sulphur-containing compounds in hydrogen at low amount fractions pmol/mol to nmol/mol) to allow identification and measurement of individual sulphur-containing impurities in real samples of hydrogen (opposed to a ‘total sulphur’ measurement). This is achieved by producing a suite of stable gravimetrically-prepared primary reference gas standards containing low amount fractions of sulphur-containing compounds (hydrogen sulphide, carbonyl sulphide, carbon disulphide, 2-methyl-2-propanethiol and tetrahydrothiophene have been selected for use in this study) to be used in conjunction with novel dynamic dilution facilities to enable generation of pmol/mol to nmol/mol level gas mixtures (a dynamic method is required as compounds at these levels would be unstable in gas cylinder mixtures). Method development and optimisation are performed using gas chromatographic techniques assisted by cryo-trapping technologies and coupled with sulphur chemiluminescence detection to allow improved qualitative and quantitative analyses of sulphur-containing impurities in hydrogen. The paper will review the state-of-the art gas standard preparation techniques, including the use and testing of dynamic dilution technologies for reactive chemical components in hydrogen. Method development will also be presented highlighting the advances in the measurement of speciated sulphur compounds in hydrogen at low amount fractions.

Keywords: gas chromatography, hydrogen purity, ISO 14687, sulphur chemiluminescence detector

Procedia PDF Downloads 195
207 Intraspecific Biochemical Diversity of Dalmatian Pyrethrum Across the Different Bioclimatic Regions of Its Natural Distribution Area

Authors: Martina Grdiša, Filip Varga, Nina Jeran, Ante Turudić, Zlatko Šatović

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.) is a plant species that occurs naturally in the eastern Mediterranean. It is of immense economic importance as it synthesizes and accumulates the phytochemical compound pyrethrin. Pyrethrin consists of several monoterpene esters (pyrethrin I and II, cinerin I and II and jasmolin I and II), which have insecticidal and repellent activity through their synergistic action. In this study, 15 natural Dalmatian pyrethrum populations were sampled along their natural range in Croatia, Bosnia and Herzegovina and Montenegro to characterize and compare their pyrethrin profiles and to define the bioclimatic factors associated with the accumulation of each pyrethrin compound. Pyrethrins were extracted from the dried flower heads of Dalmatian pyrethrum using ultrasound-assisted extraction and the amount of each compound was quantified using high-performance liquid chromatography coupled to DAD-UV /VIS. The biochemical data were subjected to analysis of variance, correlation analysis and multivariate analysis. Quantitative variability within and among populations was found, with population P15 Vranjske Njive, Podgorica having the significantly highest pyrethrin I content (66.47% of total pyrethrin content), while the highest levels of total pyrethrin were found in P14 Budva (1.27% of dry flower weight; DW), followed by P08 Korčula (1.15% DW). Based on the environmental conditions at the sampling sites of the populations, five bioclimatic groups were distinguished, referred to as A, B, C, D, and E, each with rare chemical profile. The first group (A) consisted of the northern Adriatic population P01 Vrbnik, Krk and the population P06 Sevid - the coastal population of the central Adriatic, and generally differed significantly from the other bioclimatic groups by higher average jasmolin II values (2.13% of total pyrethrin). The second group (B) consisted of two central Adriatic island populations (P02 Telašćica, Dugi otok and P03 Žman, Dugi otok), while the remaining central Adriatic island populations were grouped in bioclimatic group C, which was characterized by the significantly highest average pyrethrin II (48.52% of total pyrethrin) and cinerin II (5.31% DW) content. The South Adriatic inland populations P10 Srđ and P11 Trebinje (Bosnia and Herzegovina), and the populations from Montenegro (P12 Grahovo, P13 Lovćen, P14 Budva and P15 Vranjske Njive, Podgorica) formed bioclimatic group E. This bioclimatic group was characterized by the highest average values for pyrethrin I (53.07 % of total pyrethrin), total pyrethrin content (1.06 % DW) and the ratio of pyrethrin I and II (1.85). Slightly lower values (although not significant) for the latter traits were detected in bioclimatic group D (southern Adriatic island populations P07 Vis, P08 Korčula and P09 Mljet). A weak but significant correlation was found between the levels of some pyrethrin compounds and bioclimatic variables (e.g., BIO03 Isothermality and BIO04 Temperature Seasonality), which explains part of the variability observed in the populations studied. This suggests the interconnection between bioclimatic variables and biochemical profiles either through the selection of adapted genotypes or through the ability of species to alter the expression of biochemical traits in response to environmental changes.

Keywords: biopesticides, biochemical variability, pyrethrin, Tanacetum cinerariifolium

Procedia PDF Downloads 124
206 Silver-Doped Magnetite Titanium Oxide Nanoparticles for Photocatalytic Degradation of Organic Pollutants

Authors: Hanna Abbo, Siyasanga Noganta, Salam Titinchi

Abstract:

The global lack of clean water for human sanitation and other purposes has become an emerging dilemma for human beings. The presence of organic pollutants in wastewater produced by textile industries, leather manufacturing and chemical industries is an alarming matter for a safe environment and human health. For the last decades, conventional methods have been applied for the purification of water but due to industrialization these methods fall short. Advanced oxidation processes and their reliable application in degradation of many contaminants have been reported as a potential method to reduce and/or alleviate this problem. Lately it has been assumed that incorporation of some metal nanoparticles such as magnetite nanoparticles as photocatalyst for Fenton reaction which could improve the degradation efficiency of contaminants. Core/shell nanoparticles, are extensively studied because of their wide applications in the biomedical, drug delivery, electronics fields and water treatment. The current study is centred on the synthesis of silver-doped Fe3O4/SiO2/TiO2 photocatalyst. Magnetically separable Fe3O4@SiO2@TiO2 composite with core–shell structure were synthesized by the deposition of uniform anatase TiO2 NPs on Fe3O4@SiO2 by using titanium butoxide (TBOT) as titanium source. Then, the silver is doped on SiO2 layer by hydrothermal method. Integration of magnetic nanoparticles was suggested to avoid the post separation difficulties associated with the powder form of the TiO2 catalyst, increase of the surface area and adsorption properties. The morphology, structure, composition, and magnetism of the resulting composites were characterized and their photocatalytic activities were also evaluated. The results demonstrate that TiO2 NPs were uniformly deposited on the Fe3O4@SiO2 surface. The silver nanoparticles were also uniformly distributed on the surface of TiO2 nanoparticles. The aim of this work is to study the suitability of photocatalysis for the treatment of aqueous streams containing organic pollutants such as methylene blue which is selected as a model compound to represent one of the pollutants existing in wastewaters. Various factors such as initial pollutant concentration, photocatalyst dose and wastewater matrix were studied for their effect on the photocatalytic degradation of the organic model pollutants using the as synthesized catalysts and compared with the commercial titanium dioxide (Aeroxide P25). Photocatalysis was found to be a potential purification method for the studied pollutant also in an industrial wastewater matrix with the removal percentages of over 81 % within 15 minutes. Methylene blue was removed most efficiently and its removal consumed the least of energy in terms of the specific applied energy. The magnetic Ag/SiO2/TiO2 composites show high photocatalytic performance and can be recycled three times by magnetic separation without major loss of activity, which meant that they can be used as efficient and conveniently renewable photocatalyst.

Keywords: Magnetite nanoparticles, Titanium, Photocatalyst, Organic pollutant, Water treatment

Procedia PDF Downloads 244
205 Implementation of Smart Card Automatic Fare Collection Technology in Small Transit Agencies for Standards Development

Authors: Walter E. Allen, Robert D. Murray

Abstract:

Many large transit agencies have adopted RFID technology and electronic automatic fare collection (AFC) or smart card systems, but small and rural agencies remain tied to obsolete manual, cash-based fare collection. Small countries or transit agencies can benefit from the implementation of smart card AFC technology with the promise of increased passenger convenience, added passenger satisfaction and improved agency efficiency. For transit agencies, it reduces revenue loss, improves passenger flow and bus stop data. For countries, further implementation into security, distribution of social services or currency transactions can provide greater benefits. However, small countries or transit agencies cannot afford expensive proprietary smart card solutions typically offered by the major system suppliers. Deployment of Contactless Fare Media System (CFMS) Standard eliminates the proprietary solution, ultimately lowering the cost of implementation. Acumen Building Enterprise, Inc. chose the Yuma County Intergovernmental Public Transportation Authority (YCIPTA) existing proprietary YCAT smart card system to implement CFMS. The revised system enables the purchase of fare product online with prepaid debit or credit cards using the Payment Gateway Processor. Open and interoperable smart card standards for transit have been developed. During the 90-day Pilot Operation conducted, the transit agency gathered the data from the bus AcuFare 200 Card Reader, loads (copies) the data to a USB Thumb Drive and uploads the data to the Acumen Host Processing Center for consolidation of the data into the transit agency master data file. The transition from the existing proprietary smart card data format to the new CFMS smart card data format was transparent to the transit agency cardholders. It was proven that open standards and interoperability design can work and reduce both implementation and operational costs for small transit agencies or countries looking to expand smart card technology. Acumen was able to avoid the implementation of the Payment Card Industry (PCI) Data Security Standards (DSS) which is expensive to develop and costly to operate on a continuing basis. Due to the substantial additional complexities of implementation and the variety of options presented to the transit agency cardholder, Acumen chose to implement only the Directed Autoload. To improve the implementation efficiency and the results for a similar undertaking, it should be considered that some passengers lack credit cards and are averse to technology. There are more than 1,300 small and rural agencies in the United States. This grows by 10 fold when considering small countries or rural locations throughout Latin American and the world. Acumen is evaluating additional countries, sites or transit agency that can benefit from the smart card systems. Frequently, payment card systems require extensive security procedures for implementation. The Project demonstrated the ability to purchase fare value, rides and passes with credit cards on the internet at a reasonable cost without highly complex security requirements.

Keywords: automatic fare collection, near field communication, small transit agencies, smart cards

Procedia PDF Downloads 259
204 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity

Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos

Abstract:

Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.

Keywords: antarctic, bacteria, biosurfactants, hydrocarbons

Procedia PDF Downloads 256
203 Crystallization Based Resolution of Enantiomeric and Diastereomeric Derivatives of myo-Inositol

Authors: Nivedita T. Patil, M. T. Patil, M. S. Shashidhar, R. G. Gonnade

Abstract:

Cyclitols are cycloalkane polyols which have raise attention since they have numerous biological and pharmaceutical properties. Among these, inositols are important cyclitols, which constitute a group of naturally occurring polyhydric alcohols. Myo, scyllo, allo, neo, D-chiro- are naturally occurring structural isomer of inositol while other four isomers (L-chiro, allo, epi-, and cis-inositol) are derived from myo-inositol by chemical synthesis. Myo-inositol, most abundant isomer, plays an important role in signal transduction process and for the treatment of type 2 diabetes, bacterial infections, stimulation of menstruation, ovulation in polycystic ovary syndrome, improvement of osteogenesis, and in treatment of neurological disorders. Considering the vast application of the derivatives, it becomes important to supply these compounds for further studies in quantitative amounts, but the synthesis of suitably protected chiral inositol derivatives is the key intermediates in most of the synthesis which is difficult. Chiral inositol derivatives could also be of interest to synthetic organic chemists as they could serve as potential starting materials for the synthesis of several natural products and their analogs. Thus, obtaining chiral myo-inositol derivatives in a more eco-friendly way is need for current inositol chemistry. Thus, the resolution of nonracemates by preferential crystallization of enantiomers has not been reported as a method for inositol derivatives. We are optimistic that this work might lead to the development of the two tosylate enantiomers as synthetic chiral pool molecules for organic synthesis. Resolution of racemic 4-O-benzyl 6-O-tosyl myo-inositol 1, 3, 5 orthoformate was successfully achieved on multigram scale by preferential crystallization, which is more scalable, eco-friendly method of separation than other reported methods. The separation of the conglomeric mixture of tosylate was achieved by suspending the mixture in ethyl acetate till the level of saturation is obtained. To this saturated clear solution was added seed crystal of the desired enantiomers. The filtration of the precipitated seed was carried out at its filtration window to get enantiomerically enriched tosylate, and the process was repeated alternatively. These enantiomerically enriched samples were recrystallized to get tosylate as pure enantiomers. The configuration of the resolved enantiomers was determined by converting it to previously reported dibenzyl ether myo-inositol, which is an important precursor for mono- and tetraphosphates. We have also developed a convenient and practical method for the preparation of enantiomeric 4-O and 6-O-allyl myo-inositol orthoesters by resolution of diastereomeric allyl dicamphante orthoesters on multigram scale. These allyl ethers can be converted to other chiral protected myo-inositol derivatives using routine synthetic transformations. The chiral allyl ethers can be obtained in gram quantities, and the methods are amenable to further scale-up due to the simple procedures involved. We believe that the work described enhances the pace of research to understand the intricacies of the myo-inositol cycle as the methods described provide efficient access to enantiomeric phosphoinositols, cyclitols, and their derivatives from the abundantly available myo-inositol as a starting material.

Keywords: cyclitols, diastereomers, enantiomers, myo-inositol, preferential crystallization, signal transduction

Procedia PDF Downloads 120
202 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 153
201 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 146
200 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 138
199 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.

Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI

Procedia PDF Downloads 22
198 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 128
197 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 139
196 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 136
195 Performance of Pilot Test of Geotextile Tube Filled with Lightly Cemented Clay

Authors: S. H. Chew, Z. X. Eng, K. E. Chuah, T. Y. Lim, H. M. A. Yim

Abstract:

In recent years, geotextile tube has been widely used in the hydraulic engineering and dewatering industry. To construct a stable containment bund with geotextile tubes, the sand slurry is always the preference infilling material. However, the shortage of sand supply posts a problem in Singapore to adopt this construction method in the actual construction of long containment bund. Hence, utilizing the soft dredged clay or the excavated soft clay as the infilling material of geotextile tubes has a great economic benefit. There are any technical issues with using this soft clayey material as infilling material, especially on the excessive settlement and stability concerns. To minimize the shape deformation and settlement of geotextile tube associated with the use of this soft clay infilling material, a modified innovative infilling material is proposed – lightly cemented soft clay. The preliminary laboratory studies have shown that the dewatering mechanism via geotextile material of the tube skin, and the introduction of cementitious chemical action of the lightly cemented soft clay will accelerate the consolidation and improve the shear strength of infill material. This study aims to extend the study by conducting a pilot test of the geotextile tube filled with lightly cemented clay. This study consists of testing on a series of miniature geo-tubes and two full-size geotextile tube. In the miniature geo-tube tests, a number of small scaled-down size of geotextile tubes were filled with cemented clay (at water content of 150%) with cement content of 0% to 8% (by weight). The shear strength development of the lightly cemented clay under dewatering mechanism was evaluated using a modified in-situ Cone Penetration Test (CPT) at 0 days, 3 days, 7 days and 28 days after the infilling. The undisturbed soil samples of lightly cemented infilled clay were also extracted at 3-days and 7-days for triaxial tests and evaluation of final water content. The results suggested that the geotextile tubes filled with un-cemented soft clay experienced very significant shape change over the days (as control test). However, geotextile mini-tubes filled with lightly cemented clay experienced only marginal shape changed, even that the strength development of this lightly cemented clay inside the tube may not show significant strength gain at the early stage. The shape stability is believed to be due to the confinement effect of the geotextile tube with clay at non-slurry state. Subsequently, a full-scale instrumented geotextile tube filled with lightly cemented clay was performed. The extensive results of strain gauges and pressure transducers installed on this full-size geotextile tube demonstrated a substantial mobilization of tensile forces on the geotextile skin corresponding to the filling activity and the subsequent dewatering stage. Shape change and the in-fill material strength development was also monitored. In summary, the construction of containment bund with geotextile tube filled with lightly cemented clay is found to be technically feasible and stable with the use of the sufficiently strong (i.e. adequate tensile strength) geotextile tube, the adequate control on the dosage of cement content, and suitable water content of infilling soft clay material.

Keywords: cemented clay, containment bund, dewatering, geotextile tube

Procedia PDF Downloads 249
194 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin

Procedia PDF Downloads 103
193 Review of Health Disparities in Migrants Attending the Emergency Department with Acute Mental Health Presentations

Authors: Jacqueline Eleonora Ek, Michael Spiteri, Chris Giordimaina, Pierre Agius

Abstract:

Background: Malta is known for being a key player as a frontline country with regard to irregular immigration from Africa to Europe. Every year the island experiences an influx of migrants as boat movement across the Mediterranean continues to be a humanitarian challenge. Irregular immigration and applying for asylum is both a lengthy and mentally demanding process. Those doing so are often faced with multiple challenges, which can adversely affect their mental health. Between January and August 2020, Malta disembarked 2 162 people rescued at sea, 463 of them between July & August. Given the small size of the Maltese islands, this regulation places a disproportionately large burden on the country, creating a backlog in the processing of asylum applications resulting in increased time periods of detention. These delays reverberate throughout multiple management pathways resulting in prolonged periods of detention and challenging access to health services. Objectives: To better understand the spatial dimensions of this humanitarian crisis, this study aims to assess disparities in the acute medical management of migrants presenting to the emergency department (ED) with acute mental health presentations as compared to that of local and non-local residents. Method: In this retrospective study, 17795 consecutive ED attendances were reviewed to look for acute mental health presentations. These were further evaluated to assess discrepancies in transportation routes to hospital, nature of presenting complaint, effects of language barriers, use of CT brain, treatment given at ED, availability of psychiatric reviews, and final admission/discharge plans. Results: Of the ED attendances, 92.3% were local residents, and 7.7% were non-locals. Of the non-locals, 13.8% were migrants, and 86.2% were other-non-locals. Acute mental health presentations were seen in 1% of local residents; this increased to 20.6% in migrants. 56.4% of migrants attended with deliberate self-harm; this was lower in local residents, 28.9%. Contrastingly, in local residents, the most common presenting complaint was suicidal thought/ low mood 37.3%, the incidence was similar in migrants at 33.3%. The main differences included 12.8% of migrants presenting with refused oral intake while only 0.6% of local residents presented with the same complaints. 7.7% of migrants presented with a reduced level of consciousness, no local residents presented with this same issue. Physicians documented a language barrier in 74.4% of migrants. 25.6% were noted to be completely uncommunicative. Further investigations included the use of a CT scan in 12% of local residents and in 35.9% of migrants. The most common treatment administered to migrants was supportive fluids 15.4%, the most common in local residents was benzodiazepines 15.1%. Voluntary psychiatric admissions were seen in 33.3% of migrants and 24.7% of locals. Involuntary admissions were seen in 23% of migrants and 13.3% of locals. Conclusion: Results showed multiple disparities in health management. A meeting was held between entities responsible for migrant health in Malta, including the emergency department, primary health care, migrant detention services, and Malta Red Cross. Currently, national quality-improvement initiatives are underway to form new pathways to improve patient-centered care. These include an interpreter unit, centralized handover sheets, and a dedicated migrant health service.

Keywords: emergency department, communication, health, migration

Procedia PDF Downloads 87
192 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits

Authors: F. Iberraken, R. Medjoudj, D. Aissani

Abstract:

The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.

Keywords: reliability, AHP, renewable energy resources, smart grids

Procedia PDF Downloads 427
191 Management of the Experts in the Research Evaluation System of the University: Based on National Research University Higher School of Economics Example

Authors: Alena Nesterenko, Svetlana Petrikova

Abstract:

Research evaluation is one of the most important elements of self-regulation and development of researchers as it is impartial and independent process of assessment. The method of expert evaluations as a scientific instrument solving complicated non-formalized problems is firstly a scientifically sound way to conduct the assessment which maximum effectiveness of work at every step and secondly the usage of quantitative methods for evaluation, assessment of expert opinion and collective processing of the results. These two features distinguish the method of expert evaluations from long-known expertise widespread in many areas of knowledge. Different typical problems require different types of expert evaluations methods. Several issues which arise with these methods are experts’ selection, management of assessment procedure, proceeding of the results and remuneration for the experts. To address these issues an on-line system was created with the primary purpose of development of a versatile application for many workgroups with matching approaches to scientific work management. Online documentation assessment and statistics system allows: - To realize within one platform independent activities of different workgroups (e.g. expert officers, managers). - To establish different workspaces for corresponding workgroups where custom users database can be created according to particular needs. - To form for each workgroup required output documents. - To configure information gathering for each workgroup (forms of assessment, tests, inventories). - To create and operate personal databases of remote users. - To set up automatic notification through e-mail. The next stage is development of quantitative and qualitative criteria to form a database of experts. The inventory was made so that the experts may not only submit their personal data, place of work and scientific degree but also keywords according to their expertise, academic interests, ORCID, Researcher ID, SPIN-code RSCI, Scopus AuthorID, knowledge of languages, primary scientific publications. For each project, competition assessments are processed in accordance to ordering party demands in forms of apprised inventories, commentaries (50-250 characters) and overall review (1500 characters) in which expert states the absence of conflict of interest. Evaluation is conducted as follows: as applications are added to database expert officer selects experts, generally, two persons per application. Experts are selected according to the keywords; this method proved to be good unlike the OECD classifier. The last stage: the choice of the experts is approved by the supervisor, the e-mails are sent to the experts with invitation to assess the project. An expert supervisor is controlling experts writing reports for all formalities to be in place (time-frame, propriety, correspondence). If the difference in assessment exceeds four points, the third evaluation is appointed. As the expert finishes work on his expert opinion, system shows contract marked ‘new’, managers commence with the contract and the expert gets e-mail that the contract is formed and ready to be signed. All formalities are concluded and the expert gets remuneration for his work. The specificity of interaction of the examination officer with other experts will be presented in the report.

Keywords: expertise, management of research evaluation, method of expert evaluations, research evaluation

Procedia PDF Downloads 189
190 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 121