Search results for: open-source intelligence
790 Between Leader-Member Exchange and Toxic Leadership: A Theoretical Review
Authors: Aldila Dyas Nurfitri
Abstract:
Nowadays, leadership has became the one of main issues in forming organization groups even countries. The concept of a social contract between the leaders and subordinates become one of the explanations for the leadership process. The interests of the two parties are not always the same, but they must work together to achieve both goals. Based on the concept at the previous it comes “The Leader Member Exchange Theory”—well known as LMX Theory, which assumes that leadership is a process of social interaction interplay between the leaders and their subordinates. High-quality LMX relationships characterized by a high carrying capacity, informal supervision, confidence, and power negotiation enabled, whereas low-quality LMX relationships are described by low support, large formal supervision, less or no participation of subordinates in decision-making, and less confidence as well as the attention of the leader Application of formal supervision system in a low LMX behavior was in line with strict controls on toxic leadership model. Leaders must be able to feel toxic control all aspects of the organization every time. Leaders with this leadership model does not give autonomy to the staff. This behavior causes stagnation and make a resistant organizational culture in an organization. In Indonesia, the pattern of toxic leadership later evolved into a dysfunctional system that is growing rapidly. One consequence is the emergence of corrupt behavior. According to Kellerman, corruption is defined as a pattern and some subordinates behave lie, cheat or steal to a degree that goes beyond the norm, they put self-interest than the common good.According to the corruption data in Indonesia based on the results of ICW research on 2012 showed that the local government sector ranked first with 177 cases. Followed by state or local enterprises as much as 41 cases. LMX is defined as the quality of the relationship between superiors and subordinates are implications for the effectiveness and progress of the organization. The assumption of this theory that leadership as a process of social interaction interplay between the leaders and his followers are characterized by a number of dimensions, such as affection, loyalty, contribution, and professional respect. Meanwhile, the toxic leadership is dysfunctional leadership in organization that is led by someone with the traits are not able to adjust, do not have integrity, malevolent, evil, and full of discontent marked by a number of characteristics, such as self-centeredness, exploiting others, controlling behavior, disrespecting others, suppress innovation and creativity of employees, and inadequate emotional intelligence. The leaders with some characteristics, such as high self-centeredness, exploiting others, controlling behavior, and disrespecting others, tends to describe a low LMX relationships directly with subordinates compared with low self-centeredness, exploiting others, controlling behavior, and disrespecting others. While suppress innovation and creativity of employees aspect and inadequate emotional intelligence, tend not to give direct effect to the low quality of LMX.Keywords: leader-member exchange, toxic leadership, leadership
Procedia PDF Downloads 487789 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings
Authors: Abdulwakeel B. Raji
Abstract:
This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence
Procedia PDF Downloads 135788 Development of the Family Capacity of Management of Patients with Autism Spectrum Disorder Diagnosis
Authors: Marcio Emilio Dos Santos, Kelly C. F. Dos Santos
Abstract:
Caregivers of patients diagnosed with ASD are subjected to high stress situations due to the complexity and multiple levels of daily activities that require the organization of events, behaviors and socioemotional situations, such as immediate decision making and in public spaces. The cognitive and emotional requirement needed to fulfill this caregiving role exceeds the regular cultural process that adults receive in their process of preparation for conjugal and parental life. Therefore, in many cases, caregivers present a high level of overload, poor capacity to organize and mediate the development process of the child or patient about their care. Aims: Improvement in the cognitive and emotional capacities related to the caregiver function, allowing the reduction of the overload, the feeling of incompetence and the characteristic level of stress, developing a more organized conduct and decision making more oriented towards the objectives and procedural gains necessary for the integral development of the patient with diagnosis of ASD. Method: The study was performed with 20 relatives, randomly selected from a total of 140 patients attended. The family members were submitted to the Wechsler Adult Intelligence Scale III intelligence test and the Family assessment Management Measure (FaMM) questionnaire as a previous evaluation. Therapeutic activity in a small group of family members or caregivers, with weekly frequency, with a minimum workload of two hours, using the Feuerstein Instrumental Enrichment Cognitive Development Program - Feuerstein Instrumental Enrichment for ten months. Reapplication of the previous tests to verify the gains obtained. Results and Discussion: There is a change in the level of caregiver overload, improvement in the results of the Family assessment Management Measure and highlight to the increase of performance in the cognitive aspects related to problem solving, planned behavior and management of behavioral crises. These results lead to the discussion of the need to invest in the integrated care of patients and their caregivers, mainly by enabling cognitively to deal with the complexity of Autism. This goes beyond the simple therapeutic orientation about adjustments in family and school routines. The study showed that when the caregiver improves his/her capacity of management, the results of the treatment are potentiated and there is a reduction of the level of the caregiver's overload. Importantly, the study was performed for only ten months and the number of family members attended in the study (n = 20) needs to be expanded to have statistical strength.Keywords: caregiver overload, cognitive development program ASD caregivers, feuerstein instrumental enrichment, family assessment management measure
Procedia PDF Downloads 128787 Generative AI in Higher Education: Pedagogical and Ethical Guidelines for Implementation
Authors: Judit Vilarmau
Abstract:
Generative AI is emerging rapidly and transforming higher education in many ways, occasioning new challenges and disrupting traditional models and methods. The studies and authors explored remark on the impact on the ethics, curriculum, and pedagogical methods. Students are increasingly using generative AI for study, as a virtual tutor, and as a resource for generating works and doing assignments. This point is crucial for educators to make sure that students are using generative AI with ethical considerations. Generative AI also has relevant benefits for educators and can help them personalize learning experiences and promote self-regulation. Educators must seek and explore tools like ChatGPT to innovate without forgetting an ethical and pedagogical perspective. Eighteen studies were systematically reviewed, and the findings provide implementation guidelines with pedagogical and ethical considerations.Keywords: ethics, generative artificial intelligence, guidelines, higher education, pedagogy
Procedia PDF Downloads 88786 The Impact of Artificial Intelligence on Human Developments Obligations and Theories
Authors: Seham Elia Moussa Shenouda
Abstract:
The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 36785 The Impact of India’s Centre-State Relations on its Maritime Counter-Terrorism Strategy
Authors: Riddhi Shah
Abstract:
Centre-state relations in India are a fascinating area of studies. The structure of the relationship has an effect on every single aspect of life as we know it in India. This paper is an attempt to study centre-state relations in the context of India’s maritime counter-terrorism strategy. Although the Government of India has not publicly stated its counter-terrorism strategy on the sea; intelligence, information sharing, crisis response, finances for internal security and the nation’s legislation for battling terrorism together comprise of India’s maritime-terrorism strategy. Through study of these areas, the paper argues that the centre-state divide has had systemic implications on India’s maritime security and has largely done more harm than good to collective initiatives that aspire to prevent future risk of terrorism from the sea or on the sea.Keywords: counter-terrorism, maritime terrorism, India, federalism, centre-state relations
Procedia PDF Downloads 600784 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm
Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli
Abstract:
Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.Keywords: firefly algorithm, metaheuristic algorithm, multilevel inverter, SHEPWM
Procedia PDF Downloads 146783 Knowledge Management in Agro-Alimentary Companies in Algeria
Authors: Radia Bernaoui, Mohamed Hassoun
Abstract:
Our survey deals a theme of the measurement of the management knowledge of actors in Algerian agricultural sector, through a study carried out with professionals affiliated to agro-alimentary 'agribusinesses'. Taking into account the creation of a national device of information on the agronomic research in Algeria, the aim is to analyze their informational practices and to assess how they rate the sharing of knowledge and the process of collective intelligence. The results of our study reveal a more crucial need: The creation a suitable framework to the division of the knowledge, to produce 'knowledge shared social' where the scientific community could interact with firms. It is a question of promoting processes for the adaptation and the spreading of knowledge, through a partnership between the R&D sector and the production one, to increase the competitiveness of the firms, even the sustainable development of the country.Keywords: knowledge management, pole of competitiveness, knowledge management, economy of knowledge, agro-alimentary, agribusiness, information system, Algeria
Procedia PDF Downloads 330782 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies
Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour
Abstract:
The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop
Procedia PDF Downloads 140781 Improved K-Means Clustering Algorithm Using RHadoop with Combiner
Authors: Ji Eun Shin, Dong Hoon Lim
Abstract:
Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.Keywords: big data, combiner, K-means clustering, RHadoop
Procedia PDF Downloads 438780 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 25779 The Impact of Artificial Intelligence on Marketing Principles and Targets
Authors: Felib Ayman Shawky Salem
Abstract:
Experiential marketing means an unforgettable experience that remains deeply anchored in the customer's memory. Furthermore, customer satisfaction is defined as the emotional response to the experiences provided that relate to specific products or services purchased. Therefore, experiential marketing activities can influence the level of customer satisfaction and loyalty. In this context, the study aims to examine the relationship between experiential marketing, customer satisfaction and loyalty of beauty products in Konya. The results of this study showed that experiential marketing is an important indicator of customer satisfaction and loyalty and that experiential marketing has a significant positive impact on customer satisfaction and loyalty.Keywords: sponsorship, marketing communication theories, marketing communication tools internet, marketing, tourism, tourism management corporate responsibility, employee organizational performance, internal marketing, internal customer experiential marketing, customer satisfaction, customer loyalty, social sciences.
Procedia PDF Downloads 68778 Autonomic Recovery Plan with Server Virtualization
Authors: S. Hameed, S. Anwer, M. Saad, M. Saady
Abstract:
For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization
Procedia PDF Downloads 162777 Implementation of ANN-Based MPPT for a PV System and Efficiency Improvement of DC-DC Converter by WBG Devices
Authors: Bouchra Nadji, Elaid Bouchetob
Abstract:
PV systems are common in residential and industrial settings because of their low, upfront costs and operating costs throughout their lifetimes. Buck or boost converters are used in photovoltaic systems, regardless of whether the system is autonomous or connected to the grid. These converters became less appealing because of their low efficiency, inadequate power density, and use of silicon for their power components. Traditional devices based on Si are getting close to reaching their theoretical performance limits, which makes it more challenging to improve the performance and efficiency of these devices. GaN and SiC are the two types of WBG semiconductors with the most recent technological advancements and are available. Tolerance to high temperatures and switching frequencies can reduce active and passive component size. Utilizing high-efficiency dc-dc boost converters is the primary emphasis of this work. These converters are for photovoltaic systems that use wave energy.Keywords: component, Artificial intelligence, PV System, ANN MPPT, DC-DC converter
Procedia PDF Downloads 60776 Democrat Support to Antiterorrism of USA from Hollywood: Homeland Series
Authors: Selman Selim Akyüz, Mete Kazaz
Abstract:
Since The First Gulf War, USA, “Leader of The Free World” has been in trouble with terror. The USA created a complexity in The Middle East and paid the price with terrorist attacks in homeland. USA has made serious mistakes in terms of antiterrorism and fight against its supporters. Democrats have repaired damages caused by the Republican Party's management. Old methods about antiterrorism have been slowly abandoned. Hollywood, too, has played an important part in this war. Sometimes, Hollywood became an unquestioned patriot, sometimes it cried for the death of American Soldiers far away. In this study, messages in The Homeland, broadcast in the USA and a lot of countries around the world, are analyzed in terms of Washington’s foreign policy and position of the CIA in the fight against antiterrorism. The series reflect an orientalist viewpoint and has been criticized for offensive policy against the government. Homeland wanted to offer a perspective for the USA to be the “Leader of The Free World” again but with a liberal-democrat approach, dialogue and rational intelligence methods.Keywords: antiterrorism, CIA, homeland, USA
Procedia PDF Downloads 361775 A Conceptual Framework of Digital Twin for Homecare
Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg
Abstract:
This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence
Procedia PDF Downloads 71774 Artificial Intelligence and the Next Generation Journalistic Practice: Prospects, Issues and Challenges
Authors: Shola Abidemi Olabode
Abstract:
The technological revolution over the years has impacted journalistic practice. As a matter of fact, journalistic practice has evolved alongside technologies of every generation transforming news and reporting, entertainment, and politics. Alongside these developments, the emergence of new kinds of risks and harms associated with generative AI has become rife with implications for media and journalism. Despite their numerous benefits for research and development, generative AI technologies like ChatGPT introduce new practical, ethical, and regulatory complexities in the practice of media and journalism. This paper presents a preliminary overview of the new kinds of challenges and issues for journalism and media practice in the era of generative AI, the implications for Nigeria, and invites a consideration of methods to mitigate the evolving complexity. It draws mainly on desk-based research underscoring the literature in both developed and developing non-western contexts as a contribution to knowledge.Keywords: AI, journalism, media, online harms
Procedia PDF Downloads 80773 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 127772 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations
Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi
Abstract:
The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase
Procedia PDF Downloads 480771 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 89770 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 325769 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal
Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova
Abstract:
This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring
Procedia PDF Downloads 125768 [Keynote Talk]: Evidence Fusion in Decision Making
Authors: Mohammad Abdullah-Al-Wadud
Abstract:
In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty
Procedia PDF Downloads 425767 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 208766 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 149765 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN
Authors: Jamison Duckworth, Shankarachary Ragi
Abstract:
Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands
Procedia PDF Downloads 127764 Resource-Constrained Heterogeneous Workflow Scheduling Algorithms in Heterogeneous Computing Clusters
Authors: Lei Wang, Jiahao Zhou
Abstract:
The development of heterogeneous computing clusters provides a strong computility guarantee for large-scale workflows (e.g., scientific computing, artificial intelligence (AI), etc.). However, the tasks within large-scale workflows have also gradually become heterogeneous due to different demands on computing resources, which leads to the addition of a task resource-restricted constraint to the workflow scheduling problem on heterogeneous computing platforms. In this paper, we propose a heterogeneous constrained minimum makespan scheduling algorithm based on the idea of greedy strategy, which provides an efficient solution to the heterogeneous workflow scheduling problem in a heterogeneous platform. In this paper, we test the effectiveness of our proposed scheduling algorithm by randomly generating heterogeneous workflows with heterogeneous computing platform, and the experiments show that our method improves 15.2% over the state-of-the-art methods.Keywords: heterogeneous computing, workflow scheduling, constrained resources, minimal makespan
Procedia PDF Downloads 33763 Peculiarities of Comprehending the Subjective Well-Being by Student with High and Low Level of Emotional Intelligent
Authors: Veronika Pivkina, Alla Kim, Khon Nataliya
Abstract:
Actuality of the present study is defined first of all the role of subjective well-being problem in modern psychology and the comprehending of subjective well-being by current students. Purpose of this research is to educe peculiarities of comprehending of subjective well-being by students with various levels of emotional intelligent. Methods of research are adapted Russian-Language questionnaire of K. Riff 'The scales of psychological well-being'; emotional intelligent questionnaire of D. V. Lusin. The research involved 72 student from different universities and disciplines aged between 18 and 24. Analyzing the results of the studies, it can be concluded that the understanding of happiness in different groups of students with high and low levels of overall emotional intelligence is different, as well as differentiated by gender. Students with higher level of happiness possess more capacity and higher need to control their emotions, to cause and maintain the desired emotions and control something undesirable.Keywords: subjective well-being, emotional intelligent, psychology of comprehending, students
Procedia PDF Downloads 374762 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio
Authors: Danilo López, Edwin Rivas, Fernando Pedraza
Abstract:
Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.Keywords: ANFIS, cognitive radio, prediction primary user, RNA
Procedia PDF Downloads 420761 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa
Authors: Ayanda P. Deliwe, Storm B. Watson
Abstract:
The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources
Procedia PDF Downloads 69