Search results for: networked model predictive control
25279 Information Management Approach in the Prediction of Acute Appendicitis
Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki
Abstract:
This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree
Procedia PDF Downloads 35225278 Investigating the Relationship Between Alexithymia and Mobile Phone Addiction Along with the Mediating Role of Anxiety, Stress and Depression: A Path Analysis Study and Structural Model Testing
Authors: Pouriya Darabiyan, Hadis Nazari, Kourosh Zarea, Saeed Ghanbari, Zeinab Raiesifar, Morteza Khafaie, Hanna Tuvesson
Abstract:
Introduction Since the beginning of mobile phone addiction, alexithymia, depression, anxiety and stress have been stated as risk factors for Internet addiction, so this study was conducted with the aim of investigating the relationship between Alexithymia and Mobile phone addiction along with the mediating role of anxiety, stress and depression. Materials and methods In this descriptive-analytical and cross-sectional study in 2022, 412 students School of Nursing & Midwifery of Ahvaz Jundishapur University of Medical Sciences were included in the study using available sampling method. Data collection tools were: Demographic Information Questionnaire, Toronto Alexithymia Scale (TAS-20), Depression, Anxiety, Stress Scale (DASS-21) and Mobile Phone Addiction Index (MPAI). Frequency, Pearson correlation coefficient test and linear regression were used to describe and analyze the data. Also, structural equation models and path analysis method were used to investigate the direct and indirect effects as well as the total effect of each dimension of Alexithymia on Mobile phone addiction with the mediating role of stress, depression and anxiety. Statistical analysis was done by SPSS version 22 and Amos version 16 software. Results Alexithymia was a predictive factor for mobile phone addiction. Also, Alexithymia had a positive and significant effect on depression, anxiety and stress. Depression, anxiety and stress had a positive and significant effect on mobile phone addiction. Depression, anxiety and stress variables played the role of a relative mediating variable between Alexithymia and mobile phone addiction. Alexithymia through depression, anxiety and stress also has an indirect effect on Internet addiction. Conclusion Alexithymia is a predictive factor for mobile phone addiction; And the variables of depression, anxiety and stress play the role of a relative mediating variable between Alexithymia and mobile phone addiction.Keywords: alexithymia, mobile phone, depression, anxiety, stress
Procedia PDF Downloads 9925277 Access Control System for Big Data Application
Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud
Abstract:
Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.Keywords: access control, security, Big Data, domain
Procedia PDF Downloads 13425276 Binary Logistic Regression Model in Predicting the Employability of Senior High School Graduates
Authors: Cromwell F. Gopo, Joy L. Picar
Abstract:
This study aimed to predict the employability of senior high school graduates for S.Y. 2018- 2019 in the Davao del Norte Division through quantitative research design using the descriptive status and predictive approaches among the indicated parameters, namely gender, school type, academics, academic award recipient, skills, values, and strand. The respondents of the study were the 33 secondary schools offering senior high school programs identified through simple random sampling, which resulted in 1,530 cases of graduates’ secondary data, which were analyzed using frequency, percentage, mean, standard deviation, and binary logistic regression. Results showed that the majority of the senior high school graduates who come from large schools were females. Further, less than half of these graduates received any academic award in any semester. In general, the graduates’ performance in academics, skills, and values were proficient. Moreover, less than half of the graduates were not employed. Then, those who were employed were either contractual, casual, or part-time workers dominated by GAS graduates. Further, the predictors of employability were gender and the Information and Communications Technology (ICT) strand, while the remaining variables did not add significantly to the model. The null hypothesis had been rejected as the coefficients of the predictors in the binary logistic regression equation did not take the value of 0. After utilizing the model, it was concluded that Technical-Vocational-Livelihood (TVL) graduates except ICT had greater estimates of employability.Keywords: employability, senior high school graduates, Davao del Norte, Philippines
Procedia PDF Downloads 15525275 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms
Procedia PDF Downloads 39825274 Comparison Of Data Mining Models To Predict Future Bridge Conditions
Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed
Abstract:
Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models
Procedia PDF Downloads 19125273 Decentralized Control of Interconnected Systems with Non-Linear Unknown Interconnections
Authors: Haci Mehmet Guzey, Levent Acar
Abstract:
In this paper, a novel decentralized controller is developed for linear systems with nonlinear unknown interconnections. A model linear decoupled system is assigned for each system. By using the difference actual and model state dynamics, the problem is formulated as inverse problem. Then, the interconnected dynamics are approximated by using Galerkin’s expansion method for inverse problems. Two different sets of orthogonal basis functions are utilized to approximate the interconnected dynamics. Approximated interconnections are utilized in the controller to cancel the interconnections and decouple the systems. Subsequently, the interconnected systems behave as a collection of decoupled systems.Keywords: decentralized control, inverse problems, large scale systems, nonlinear interconnections, basis functions, system identification
Procedia PDF Downloads 53225272 Sensitivity and Specificity of Some Serological Tests Used for Diagnosis of Bovine Brucellosis in Egypt on Bacteriological and Molecular Basis
Authors: Hosein I. Hosein, Ragab Azzam, Ahmed M. S. Menshawy, Sherin Rouby, Khaled Hendy, Ayman Mahrous, Hany Hussien
Abstract:
Brucellosis is a highly contagious bacterial zoonotic disease of a worldwide spread and has different names; Infectious or enzootic abortion and Bang's disease in animals; and Mediterranean or Malta fever, Undulant Fever and Rock fever in humans. It is caused by the different species of genus Brucella which is a Gram-negative, aerobic, non-spore forming, facultative intracellular bacterium. Brucella affects a wide range of mammals including bovines, small ruminants, pigs, equines, rodents, marine mammals as well as human resulting in serious economic losses in animal populations. In human, Brucella causes a severe illness representing a great public health problem. The disease was reported in Egypt for the first time in 1939; since then the disease remained endemic at high levels among cattle, buffalo, sheep and goat and is still representing a public health hazard. The annual economic losses due to brucellosis were estimated to be about 60 million Egyptian pounds yearly, but actual estimates are still missing despite almost 30 years of implementation of the Egyptian control programme. Despite being the gold standard, bacterial isolation has been reported to show poor sensitivity for samples with low-level of Brucella and is impractical for regular screening of large populations. Thus, serological tests still remain the corner stone for routine diagnosis of brucellosis, especially in developing countries. In the present study, a total of 1533 cows (256 from Beni-Suef Governorate, 445 from Al-Fayoum Governorate and 832 from Damietta Governorate), were employed for estimation of relative sensitivity, relative specificity, positive predictive value and negative predictive value of buffered acidified plate antigen test (BPAT), rose bengal test (RBT) and complement fixation test (CFT). The overall seroprevalence of brucellosis revealed (19.63%). Relative sensitivity, relative specificity, positive predictive value and negative predictive value of BPAT,RBT and CFT were estimated as, (96.27 %, 96.76 %, 87.65 % and 99.10 %), (93.42 %, 96.27 %, 90.16 % and 98.35%) and (89.30 %, 98.60 %, 94.35 %and 97.24 %) respectively. BPAT showed the highest sensitivity among the three employed serological tests. RBT was less specific than BPAT. CFT showed the least sensitivity 89.30 % among the three employed serological tests but showed the highest specificity. Different tissues specimens of 22 seropositive cows (spleen, retropharyngeal udder, and supra-mammary lymph nodes) were subjected for bacteriological studies for isolation and identification of Brucella organisms. Brucella melitensis biovar 3 could be recovered from 12 (54.55%) cows. Bacteriological examinations failed to classify 10 cases (45.45%) and were culture negative. Bruce-ladder PCR was carried out for molecular identification of the 12 Brucella isolates at the species level. Three fragments of 587 bp, 1071 bp and 1682 bp sizes were amplified indicating Brucella melitensis. The results indicated the importance of using several procedures to overcome the problem of escaping of some infected animals from diagnosis.Bruce-ladder PCR is an important tool for diagnosis and epidemiologic studies, providing relevant information for identification of Brucella spp.Keywords: brucellosis, relative sensitivity, relative specificity, Bruce-ladder, Egypt
Procedia PDF Downloads 35625271 Optimized Passive Heating for Multifamily Dwellings
Authors: Joseph Bostick
Abstract:
A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure.Keywords: energy plus, MATLAB, simulation, energy efficiency
Procedia PDF Downloads 17625270 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 19225269 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 14225268 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Yupaporn Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).Keywords: average run length, optimal parameters, exponentially weighted moving average (EWMA), control chart
Procedia PDF Downloads 56025267 Effect of Education Based-on the Health Belief Model on Preventive Behaviors of Exposure to Secondhand Smoke among Women
Authors: Arezoo Fallahi
Abstract:
Introduction: Exposure to second-hand smoke is an important global health problem and threatens the health of people, especially children and women. The aim of this study was to determine the effect of education based on the Health Belief Model on preventive behaviors of exposure to second-hand smoke in women. Materials and Methods: This experimental study was performed in 2022 in Sanandaj, west of Iran. Seventy-four people were selected by simple random sampling and divided into an intervention group (37 people) and a control group (37 people). Data collection tools included demographic characteristics and a second-hand smoke exposure questionnaire based on the Health Beliefs Model. The training in the intervention group was conducted in three one-hour sessions in the comprehensive health service centers in the form of lectures, pamphlets, and group discussions. Data were analyzed using SPSS software version 21 and statistical tests such as correlation, paired t-test, and independent t-test. Results: The intervention and control groups were homogeneous before education. They were similar in terms of mean scores of the Health Belief Model. However, after an educational intervention, some of the scores increased, including the mean perceived sensitivity score (from 17.62±2.86 to 19.75±1.23), perceived severity score (28.40±4.45 to 31.64±2), perceived benefits score (27.27±4.89 to 31.94±2.17), practice score (32.64±4.68 to 36.91±2.32) perceived barriers from 26.62±5.16 to 31.29±3.34, guide for external action (from 17.70±3.99 to 22/89 ±1.67), guide for internal action from (16.59±2.95 to 1.03±18.75), and self-efficacy (from 19.83 ±3.99 to 23.37±1.43) (P <0.05). Conclusion: The educational intervention designed based on the Health Belief Model in women was effective in performing preventive behaviors against exposure to second-hand smoke.Keywords: education, women, exposure to secondhand smoke, health belief model
Procedia PDF Downloads 7325266 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control
Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen
Abstract:
In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics
Procedia PDF Downloads 58125265 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 5025264 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 20025263 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation
Authors: A. Yanik, U. Aldemir
Abstract:
This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.Keywords: bridge structures, passive control, seismic, semi-active control, viscous damping
Procedia PDF Downloads 24225262 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.Keywords: passive control system, damping devices, viscous dampers, control algorithm
Procedia PDF Downloads 47125261 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 20925260 Speed Power Control of Double Field Induction Generator
Authors: Ali Mausmi, Ahmed Abbou, Rachid El Akhrif
Abstract:
This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.Keywords: control of speed, correction of the equivalent command, induction generator, sliding mode
Procedia PDF Downloads 37725259 Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq
Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany
Abstract:
Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.Keywords: Ductal Breast Cancer, Hormone Sensitivity, Iraq, Risk Factors
Procedia PDF Downloads 12825258 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.Keywords: renewable energy, power, storage, wind, energy plan
Procedia PDF Downloads 7825257 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model
Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee
Abstract:
In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.Keywords: automotive security, HEAVENS, car hacking, security model, information security
Procedia PDF Downloads 36725256 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 6525255 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus
Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen
Abstract:
The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay
Procedia PDF Downloads 28025254 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles
Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane
Abstract:
In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.Keywords: autonomous vehicles, convoy, non-linear control, non-linear observer, sliding mode
Procedia PDF Downloads 14125253 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 37325252 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 13825251 Inclusion of Students with Disabilities (SWD) in Higher Education Institutions (HEIs): Self-Advocacy and Engagement as Central
Authors: Tadesse Abera
Abstract:
This study aimed to investigate the contribution of self-advocacy and engagement in the inclusion of SWDs in HEIs. A convergent parallel mixed methods design was employed. This article reports the quantitative strand. A total of 246 SWDs were selected through stratified proportionate random sampling technique from five public HEIs in Ethiopia. Data were collected through Self-advocacy questionnaire, student engagement scale, and college student experience questionnaire and analyzed through frequency, percentage, mean, standard deviation, correlation, one sample t-test and multiple regression. Both self-advocacy and engagement were found to have a predictive power on inclusion of respondents in the HEIs, where engagement was found to be more predictor. From the components of self-advocacy, knowledge of self and leadership and from engagement dimensions sense of belonging, cognitive, and valuing in their respective orders were found to have a stronger predictive power on the inclusion of respondents in the institutions. Based on the findings it was concluded that, if students with disabilities work hard to be self-determined, strive for realizing social justice, exert quality effort and seek active involvement, their inclusion in the institutions would be ensured.Keywords: self-advocacy, engagement, inclusion, students with disabilities, higher education institution
Procedia PDF Downloads 7825250 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 91