Search results for: network performance
15720 Behavior of SPEC CPU2006 Based on Optimization Levels
Authors: Faisel Elramalli, Ibrahim Althomali Amjad Sabbagh, Dhananjay Tambe
Abstract:
SPEC CPU benchmarks are used to evaluate the performance of CPUs on computer systems. In our project we are going to use SPEC CPU suite that contains several benchmarks running on two different compilers gcc and icc in different optimizations levels to evaluate the performance of a CPU. The motivation of this project is to find out which compiler and in which optimization level makes the CPU reaches the best performance. The results of that evaluation will help users of these compilers to choose the best compiler and optimization level that perform efficiently for their work. In other words, it will give users the best performance of the CPU while doing their works. This project is interesting since it will provide the method used to measure the performance of CPU and how different optimization levels of compilers can help achieve a higher performance. Moreover, it will give a good understanding of how benchmarks are used to evaluate a CPU performance. For the reader, in reality SPEC CPU benchmarks are used to measure the performance of new released CPUs to be compared to other CPUs.Keywords: SPEC, CPU, GCC, ICC, copilers
Procedia PDF Downloads 48515719 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 29615718 Proactive WPA/WPA2 Security Using DD-WRT Firmware
Authors: Mustafa Kamoona, Mohamed El-Sharkawy
Abstract:
Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.Keywords: Wi-Fi, WPS, TLS, DD-WRT
Procedia PDF Downloads 23315717 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 16315716 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges
Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat
Abstract:
Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing
Procedia PDF Downloads 44515715 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 33515714 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 34315713 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation
Procedia PDF Downloads 37215712 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.Keywords: cognitive decline, functional connectivity, MCI, MMSE
Procedia PDF Downloads 38315711 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm
Authors: Seyedmahdi Mousavihashemi
Abstract:
One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design
Procedia PDF Downloads 50015710 VCloud: A Security Framework for VANET
Authors: Wiseborn Manfe Danquah, D. Turgay Altilar
Abstract:
Vehicular Ad-hoc Network (VANET) is an integral component of Intelligent Transport Systems (ITS) that has enjoyed a lot of attention from the research community and the automotive industry. This is mainly due to the opportunities and challenges it presents. Vehicular Ad-hoc Network being a class of Mobile Ad-hoc Networks (MANET) has all the security concerns existing in traditional MANET as well as new security and privacy concerns introduced by the unique vehicular communication environment. This paper provides a survey of the possible attacks in vehicular environment, as well as security and privacy concerns in VANET. It also provides an insight into the development of a comprehensive cloud framework to provide a more robust and secured communication among vehicular nodes and road side units. Our proposal, a Metropolitan Based Public Interconnected Vehicular Cloud (MIVC) infrastructure seeks to provide a more reliable and secured vehicular communication network.Keywords: mobile Ad-hoc networks, vehicular ad hoc network, cloud, ITS, road side units (RSU), metropolitan interconnected vehicular cloud (MIVC)
Procedia PDF Downloads 35415709 Computer Network Applications, Practical Implementations and Structural Control System Representations
Authors: El Miloudi Djelloul
Abstract:
The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software
Procedia PDF Downloads 36515708 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.Keywords: sensor, wireless sensor network, oil, sensor, on-shore level
Procedia PDF Downloads 44615707 Network User Rules in Universities
Authors: Michel Berthiaume, Daniel Chamberland-Tremblay, Elaine Paiva Mosconi, Jérôme Blanchet-Brisson
Abstract:
This presentation documents the overall failure of North-American universities to build an effective IT Policies communication with their primary users: the students. A sample of 12 universities was selected. A set of indicators based on usability principles to assess the content of IT Policies vas devised. Then, IT Policies were rated according to the indicators and the results analyzed to build an overall picture of the potential of communication problems in policy communication. The initial finding is that network security professionals in Universities have to reach a delicate balance between asset protection, asset valorization and user security awareness.Keywords: computer security, IT policy, security awareness, network user rules
Procedia PDF Downloads 56215706 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 10215705 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 16015704 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 11915703 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 10015702 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara
Abstract:
Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases
Procedia PDF Downloads 14215701 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education
Authors: Mohammed A. M. Ibrahim
Abstract:
This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption
Procedia PDF Downloads 33715700 Terrain Classification for Ground Robots Based on Acoustic Features
Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow
Abstract:
The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.Keywords: acoustic features, autonomous robots, feature extraction, terrain classification
Procedia PDF Downloads 36915699 Cellular Architecture of Future Wireless Communication Networks
Authors: Mohammad Yahaghifar
Abstract:
Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications
Procedia PDF Downloads 48815698 Measuring Delay Using Software Defined Networks: Limitations, Challenges, and Suggestions for Openflow
Authors: Ahmed Alutaibi, Ganti Sudhakar
Abstract:
Providing better Quality-of-Service (QoS) to end users has been a challenging problem for researchers and service providers. Building applications relying on best effort network protocols hindered the adoption of guaranteed service parameters and, ultimately, Quality of Service. The introduction of Software Defined Networking (SDN) opened the door for a new paradigm shift towards a more controlled programmable configurable behavior. Openflow has been and still is the main implementation of the SDN vision. To facilitate better QoS for applications, the network must calculate and measure certain parameters. One of those parameters is the delay between the two ends of the connection. Using the power of SDN and the knowledge of application and network behavior, SDN networks can adjust to different conditions and specifications. In this paper, we use the capabilities of SDN to implement multiple algorithms to measure delay end-to-end not only inside the SDN network. The results of applying the algorithms on an emulated environment show that we can get measurements close to the emulated delay. The results also show that depending on the algorithm, load on the network and controller can differ. In addition, the transport layer handshake algorithm performs best among the tested algorithms. Out of the results and implementation, we show the limitations of Openflow and develop suggestions to solve them.Keywords: software defined networking, quality of service, delay measurement, openflow, mininet
Procedia PDF Downloads 16515697 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm
Procedia PDF Downloads 37415696 Indoor Temperature Estimation with FIR Filter Using R-C Network Model
Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn
Abstract:
In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter
Procedia PDF Downloads 44815695 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model
Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na
Abstract:
Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.Keywords: elastic network model, Kinesin-1, autoinhibition
Procedia PDF Downloads 45515694 Distributed Automation System Based Remote Monitoring of Power Quality Disturbance on LV Network
Authors: Emmanuel D. Buedi, K. O. Boateng, Griffith S. Klogo
Abstract:
Electrical distribution networks are prone to power quality disturbances originating from the complexity of the distribution network, mode of distribution (overhead or underground) and types of loads used by customers. Data on the types of disturbances present and frequency of occurrence is needed for economic evaluation and hence finding solution to the problem. Utility companies have resorted to using secondary power quality devices such as smart meters to help gather the required data. Even though this approach is easier to adopt, data gathered from these devices may not serve the required purpose, since the installation of these devices in the electrical network usually does not conform to available PQM placement methods. This paper presents a design of a PQM that is capable of integrating into an existing DAS infrastructure to take advantage of available placement methodologies. The monitoring component of the design is implemented and installed to monitor an existing LV network. Data from the monitor is analyzed and presented. A portion of the LV network of the Electricity Company of Ghana is modeled in MATLAB-Simulink and analyzed under various earth fault conditions. The results presented show the ability of the PQM to detect and analyze PQ disturbance such as voltage sag and overvoltage. By adopting a placement methodology and installing these nodes, utilities are assured of accurate and reliable information with respect to the quality of power delivered to consumers.Keywords: power quality, remote monitoring, distributed automation system, economic evaluation, LV network
Procedia PDF Downloads 34915693 Developing Pavement Maintenance Management System (PMMS) for Small Cities, Aswan City Case Study
Authors: Ayman Othman, Tallat Ali
Abstract:
A pavement maintenance management system (PMMS) was developed for the city of Aswan as a model of a small city to provide the road maintenance department in Aswan city with the capabilities for comprehensive planning of the maintenance activities needed to put the internal pavement network into desired physical condition in view of maintenance budget constraints. The developed system consists of three main stages. First is the inventory & condition survey stage where the internal pavement network of Aswan city was inventoried and its actual conditions were rated in segments of 100 meters length. Second is the analysis stage where pavement condition index (PCI) was calculated and the most appropriate maintenance actions were assigned for each segment. The total maintenance budget was also estimated and a parameter based ranking criteria were developed to prioritize maintenance activities when the available maintenance budget is not sufficient. Finally comes the packaging stage where approved maintenance budget is packed into maintenance projects for field implementation. System results indicate that, the system output maintenance budget is very reasonable and the system output maintenance programs agree to a great extent with the actual maintenance needs of the network. Condition survey of Aswan city road network showed that roughness is the most dominate distress. In general, the road network can be considered in a fairly reasonable condition, however, the developed PMMS needs to be officially adapted to maintain the road network in a desirable condition and to prevent further deterioration.Keywords: pavement, maintenance, management, system, distresses, survey, ranking
Procedia PDF Downloads 24815692 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks
Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid
Abstract:
Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.Keywords: WSN, routing, cluster based, meme, memetic algorithm
Procedia PDF Downloads 48115691 Sensor Validation Using Bottleneck Neural Network and Variable Reconstruction
Authors: Somia Bouzid, Messaoud Ramdani
Abstract:
The success of any diagnosis strategy critically depends on the sensors measuring process variables. This paper presents a detection and diagnosis sensor faults method based on a Bottleneck Neural Network (BNN). The BNN approach is used as a statistical process control tool for drinking water distribution (DWD) systems to detect and isolate the sensor faults. Variable reconstruction approach is very useful for sensor fault isolation, this method is validated in simulation on a nonlinear system: actual drinking water distribution system. Several results are presented.Keywords: fault detection, localization, PCA, NLPCA, auto-associative neural network
Procedia PDF Downloads 389