Search results for: multi-points sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1152

Search results for: multi-points sensing

372 Highly Sensitive Nanostructured Chromium Oxide Sensor for Analysis of Diabetic Patient’s Breath

Authors: Nipin Kohli, Ravi Chand Singh

Abstract:

Diabetes mellitus is a serious illness and can be life-threatening if left untreated. Acetone present in the exhaled breath of a diabetic person is a biomarker of patients suffering from diabetes mellitus and is higher than its usual concentration present in the breath of healthy people. In the present work, a portable gas sensor system based on chromium oxide (Cr₂O₃) nanoparticles has been developed that can analyze diabetic patient’s breath. Undoped and indium (In) doped Cr₂O₃ nanoparticles were synthesized by a chemical route and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy for their structural, morphological and optical properties. Thick film gas sensors were fabricated out of synthesized samples. To diagnose diabetes, the sensors’ response to low concentrations of acetone was measured, and it was found that the addition of indium dramatically enhances the acetone gas sensing response. Moreover, the fabricated sensors were highly stable, reproducible and resistant to humidity. Enhancement of sensor response of doped sensors towards acetone can be ascribed to increase in defects due to addition of a dopant, and it was found that in-doped Cr₂O₃ sensors are more useful for analysis of breath of diabetic patients.

Keywords: Diabetes mellitus, nanoparticles, raman spectroscopy, sensor

Procedia PDF Downloads 142
371 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms

Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao

Abstract:

Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.

Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50

Procedia PDF Downloads 137
370 Morphological Characteristics and Development of the Estuary Area of Lam River, Vietnam

Authors: Hai Nguyen Tien

Abstract:

On the basis of the structure of alluvial sediments explained by echo sounding data and remote sensing images, the following results can be given: The estuary of Lam river (from Ben Thuy bridge to Cua Hoi) is divided into 3 channel (location is calculated according to the river bank on the Nghe An province) : i) channel I (from Ben Thuy bridge to Hung Hoa) is the branching river; ii) channel II (from Hung Hoa to Nghi Thai is a channel develops in a meandering direction with a concave side toward Ha Tinh province; iii) channel III, from Nghi Thai to Cua Hoi is a channel develops in a meandering direction with a concave side toward Nghe An province. This estuary area is formed in the period from after the sea level dropped below 0m (current water level) to the present: i) Chanel II developed moving towards Ha Tinh provnce; ii) Chanel III developed moving towards Nghe An province; iii) In chanel I, a second river branch is formed because the flow of river cuts through the Hong Lam- Hong Nhat mudflat, at the same time creating an island. Morphological characteristics of the estuary area of Lam River are the main result of erosion and deposition activities corresponding to two water levels: low water level below 0 m and water level 0 m (current water level). Characteristics of the sediment layers on the riverbed in the estuary can be used to determine the sea levels in Late Holocene–Present.

Keywords: Lam River, development, Cua Hoi, river morphology

Procedia PDF Downloads 124
369 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 319
368 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law

Procedia PDF Downloads 398
367 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques

Authors: Mohd Asim, K. Nageswara Rao

Abstract:

The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.

Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR

Procedia PDF Downloads 122
366 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method

Authors: W. H. Zheng, J. Li, F. J. Hong

Abstract:

Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.

Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method

Procedia PDF Downloads 161
365 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 201
364 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability

Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi

Abstract:

There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization

Keywords: cybersecurity, supply chain methodology, secure substation, digitization

Procedia PDF Downloads 60
363 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 113
362 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 183
361 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method

Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna

Abstract:

Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.

Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF

Procedia PDF Downloads 194
360 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 104
359 Estimation of Carbon Sequestration and Air Quality of Terrestrial Ecosystems Using Remote Sensing Techniques

Authors: Kanwal Javid, Shazia Pervaiz, Maria Mumtaz, Muhammad Ameer Nawaz Akram

Abstract:

Forests and grasslands ecosystems play an important role in the global carbon cycle. Land management activities influence both ecosystems and enable them to absorb and sequester carbon dioxide (CO2). Similarly, in Pakistan, these terrestrial ecosystems are well known to mitigate carbon emissions and have a great source to supply a variety of services such as clean air and water, biodiversity, wood products, wildlife habitat, food, recreation and carbon sequestration. Carbon sequestration is the main agenda of developed and developing nations to reduce the impacts of global warming. But the amount of carbon storage within these ecosystems can be affected by many factors related to air quality such as land management, land-use change, deforestation, over grazing and natural calamities. Moreover, the long-term capacity of forests and grasslands to absorb and sequester CO2 depends on their health, productivity, resilience and ability to adapt to changing conditions. Thus, the main rationale of this study is to monitor the difference in carbon amount of forests and grasslands of Northern Pakistan using MODIS data sets and map results using Geographic Information System. Results of the study conclude that forests ecosystems are more effective in reducing the CO2 level and play a key role in improving the quality of air.

Keywords: carbon sequestration, grasslands, global warming, climate change.

Procedia PDF Downloads 186
358 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 75
357 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 239
356 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 267
355 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry

Authors: Basem Kamal Abasakhiroun Farag

Abstract:

Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.

Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.

Procedia PDF Downloads 64
354 Mean Field Model Interaction for Computer and Communication Systems: Modeling and Analysis of Wireless Sensor Networks

Authors: Irina A. Gudkova, Yousra Demigha

Abstract:

Scientific research is moving more and more towards the study of complex systems in several areas of economics, biology physics, and computer science. In this paper, we will work on complex systems in communication networks, Wireless Sensor Networks (WSN) that are considered as stochastic systems composed of interacting entities. The current advancements of the sensing in computing and communication systems is an investment ground for research in several tracks. A detailed presentation was made for the WSN, their use, modeling, different problems that can occur in their application and some solutions. The main goal of this work reintroduces the idea of mean field method since it is a powerful technique to solve this type of models especially systems that evolve according to a Continuous Time Markov Chain (CTMC). Modeling of a CTMC has been focused; we obtained a large system of interacting Continuous Time Markov Chain with population entities. The main idea was to work on one entity and replace the others with an average or effective interaction. In this context to make the solution easier, we consider a wireless sensor network as a multi-body problem and we reduce it to one body problem. The method was applied to a system of WSN modeled as a Markovian queue showing the results of the used technique.

Keywords: Continuous-Time Markov Chain, Hidden Markov Chain, mean field method, Wireless sensor networks

Procedia PDF Downloads 162
353 The Challenge of Characterising Drought Risk in Data Scarce Regions: The Case of the South of Angola

Authors: Natalia Limones, Javier Marzo, Marcus Wijnen, Aleix Serrat-Capdevila

Abstract:

In this research we developed a structured approach for the detection of areas under the highest levels of drought risk that is suitable for data-scarce environments. The methodology is based on recent scientific outcomes and methods and can be easily adapted to different contexts in successive exercises. The research reviews the history of drought in the south of Angola and characterizes the experienced hazard in the episode from 2012, focusing on the meteorological and the hydrological drought types. Only global open data information coming from modeling or remote sensing was used for the description of the hydroclimatological variables since there is almost no ground data in this part of the country. Also, the study intends to portray the socioeconomic vulnerabilities and the exposure to the phenomenon in the region to fully understand the risk. As a result, a map of the areas under the highest risk in the south of the country is produced, which is one of the main outputs of this work. It was also possible to confirm that the set of indicators used revealed different drought vulnerability profiles in the South of Angola and, as a result, several varieties of priority areas prone to distinctive impacts were recognized. The results demonstrated that most of the region experienced a severe multi-year meteorological drought that triggered an unprecedent exhaustion of the surface water resources, and that the majority of their socioeconomic impacts started soon after the identified onset of these processes.

Keywords: drought risk, exposure, hazard, vulnerability

Procedia PDF Downloads 190
352 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 206
351 Optimum Irrigation System Management for Climate Resilient and Improved Productivity of Flood-based Livelihood Systems

Authors: Mara Getachew Zenebe, Luuk Fleskens, Abdu Obieda Ahmed

Abstract:

This paper seeks to advance our scientific understanding of optimizing flood utilization in regions impacted by climate change, with a focus on enhancing agricultural productivity through effective irrigation management. The study was conducted as part of a three-year (2021 to 2023) USAID-supported initiative aimed at promoting Economic Growth and Peace in the Gash Agricultural Scheme (GAS), situated in Sudan's water-stressed Eastern region. GAS is the country's largest flood-irrigated scheme, covering 100,800 hectares of cultivable land, with a potential to provide the food security needs of over a quarter of a million agro-pastoral community members. GAS relies on the Gash River, which sources its water from high-intensity rainfall events in the highlands of Ethiopia and Eritrea. However, climate change and variations in these highlands have led to increased variability in the Gash River's flow. The study conducted water balance analyses based on a ten-year dataset of the annual Gash River flow, irrigated area; as well as the evapotranspiration demand of the major sorghum crop. Data collection methods included field measurements, surveys, remote sensing, and CropWat modelling. The water balance assessment revealed that the existing three-year rotation-based irrigation system management, capping cultivated land at 33,000 hectares annually, is excessively risk-averse. While this system reduced conflicts among the agro-pastoral communities by consistently delivering on the land promised to be annually cultivated, it also increased GAS's vulnerability to flood damage due to several reasons. The irrigation efficiency over the past decade was approximately 30%, leaving significant unharnessed floodwater that caused damage to infrastructure and agricultural land. The three-year rotation resulted in inadequate infrastructural maintenance, given the destructive nature of floods. Additionally, it led to infrequent land tillage, allowing the encroachment of mesquite trees hindering major sorghum crop growth. Remote sensing data confirmed that mesquite trees have overtaken 70,000 hectares in the past two decades, rendering them unavailable for agriculture. The water balance analyses suggest shifting to a two-year rotation, covering approximately 50,000 hectares annually while maintaining risk aversion. This shift could boost GAS's annual sorghum production by two-thirds, exceeding 850,000 tons. The scheme's efficiency can be further enhanced through low-cost on-farm interventions. Currently, large irrigation plots that range from 420 to 756 hectares are irrigated with limited water distribution guidance, leading to uneven irrigation. As demonstrated through field trials, implementing internal longitudinal bunds and horizontal deflector bunds can increase adequately irrigated parts of the irrigation plots from 50% to 80% and thus nearly double the sorghum yield to 2 tons per hectare while reducing the irrigation duration from 30 days to a maximum of 17 days. Flow measurements in 2021 and 2022 confirmed that these changes sufficiently meet the sorghum crop's water requirements, even with a conservative 60% field application efficiency assumption. These insights and lessons from the GAS on enhancing agricultural resilience and sustainability in the face of climate change are relevant to flood-based livelihood systems globally.

Keywords: climate change, irrigation management and productivity, variable flood flows, water balance analysis

Procedia PDF Downloads 72
350 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection

Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis

Abstract:

This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.

Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller

Procedia PDF Downloads 125
349 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor

Authors: Panupong Makvichian

Abstract:

Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.

Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor

Procedia PDF Downloads 196
348 Analyzing of the Urban Landscape Configurations and Expansion of Dire Dawa City, Ethiopia Using Satellite Data and Landscape Metrics Approaches

Authors: Berhanu Keno Terfa

Abstract:

To realize the consequences of urbanization, accurate, and up-to-date representation of the urban landscape patterns is critical for urban planners and policymakers. Thus, the study quantitatively characterized the spatiotemporal composition and configuration of the urban landscape and urban expansion process in Dire Dawa City, Ethiopia, form the year 2006 to 2018. The integrated approaches of various sensors satellite data, Spot (2006) and Sentinel 2 (2018) combined with landscape metrics analysis was employed to explore the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 62% between 2006 and 2018, at an average annual increment of 3.6%, while the other land covers were lost significantly due to urban expansion. The highest urban expansion has occurred in the northwest direction, whereas the most fragmented landscape pattern was recorded in the west direction. Overall, the analysis showed that Dire Dawa City experienced accelerated urban expansion with a fragmented and complicated spatiotemporal urban landscape patterns, suggesting a strong tendency towards sprawl over the past 12 years. The findings in the study could help planners and policy developers to insight the historical dynamics of the urban region for sustainable development.

Keywords: zonal metrics, multi-temporal, multi-resolution, urban growth, remote sensing data

Procedia PDF Downloads 199
347 Site Suitability Analysis for Multipurpose Dams Using Geospatial Technologies

Authors: Saima Iftikhar Rida Shabbir, Zeeshan Hassan

Abstract:

Water shortage, energy crisis and natural misfortunes are the glitches which reduce the efficacy of agricultural ecosystems especially in Pakistan where these are more frequent besides being intense. Accordingly, the agricultural water resources, food security and country’s economy are at risk. To address this, we have used Geospatial techniques incorporating ASTER Global DEM, Geological map, rainfall data, discharge data, Landsat 5 image of Swat valley in order to assess the viability of selected sites. The sites have been studied via GIS tools, Hydrological investigation and multiparametric analysis for their potentialities of collecting and securing the rain water; regulating floods by storing the surplus water bulks by check dams and developing them for power generation. Our results showed that Siat1-1 was very useful for low-cost dam with main objective of as Debris dam; Site-2 and Site 3 were check dams sites having adequate storing reservoir so as to arrest the inconsistent flow accompanied by catering the sedimentation effects and the debris flows; Site 4 had a huge reservoir capacity but it entails enormous edifice cost over very great flood plain. Thus, there is necessity of active Hydrological developments to estimate the flooded area using advanced and multifarious GIS and remote sensing approaches so that the sites could be developed for harnessing those sites for agricultural and energy drives.

Keywords: site suitability, check dams, SHP, terrain analysis, volume estimation

Procedia PDF Downloads 312
346 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 105
345 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 47
344 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 435
343 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 89