Search results for: mean bias error
1726 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code
Procedia PDF Downloads 1371725 Analysis of the Fair Distribution of Urban Facilities in Kabul City by Population Modeling
Authors: Ansari Mohammad Reza, Hiroko Ono
Abstract:
In this study, we investigated how much of the urban facilities are fairly distributing in the city of Kabul based on the factor of population. To find the answer to this question we simulated a fair model for the distribution of investigated facilities in the city which is proposed based on the consideration of two factors; the number of users for each facility and the average distance of reach of each facility. Then the model was evaluated to make sure about its efficiency. And finally, the two—the existing pattern and the simulation model—were compared to find the degree of bias in the existing pattern of distribution of facilities in the city. The result of the study clearly clarified that the facilities are not fairly distributed in Kabul city based on the factor of population. Our analysis also revealed that the education services and the parks are the most and the worst fair distributed facilities in this regard.Keywords: Afghanistan, ArcGIS Software, Kabul City, fair distribution, urban facilities
Procedia PDF Downloads 1791724 Wasting Human and Computer Resources
Authors: Mária Csernoch, Piroska Biró
Abstract:
The legends about “user-friendly” and “easy-to-use” birotical tools (computer-related office tools) have been spreading and misleading end-users. This approach has led us to the extremely high number of incorrect documents, causing serious financial losses in the creating, modifying, and retrieving processes. Our research proved that there are at least two sources of this underachievement: (1) The lack of the definition of the correctly edited, formatted documents. Consequently, end-users do not know whether their methods and results are correct or not. They are not aware of their ignorance. They are so ignorant that their ignorance does not allow them to realize their lack of knowledge. (2) The end-users’ problem-solving methods. We have found that in non-traditional programming environments end-users apply, almost exclusively, surface approach metacognitive methods to carry out their computer related activities, which are proved less effective than deep approach methods. Based on these findings we have developed deep approach methods which are based on and adapted from traditional programming languages. In this study, we focus on the most popular type of birotical documents, the text-based documents. We have provided the definition of the correctly edited text, and based on this definition, adapted the debugging method known in programming. According to the method, before the realization of text editing, a thorough debugging of already existing texts and the categorization of errors are carried out. With this method in advance to real text editing users learn the requirements of text-based documents and also of the correctly formatted text. The method has been proved much more effective than the previously applied surface approach methods. The advantages of the method are that the real text handling requires much less human and computer sources than clicking aimlessly in the GUI (Graphical User Interface), and the data retrieval is much more effective than from error-prone documents.Keywords: deep approach metacognitive methods, error-prone birotical documents, financial losses, human and computer resources
Procedia PDF Downloads 3821723 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: football, penalty shootouts, Montecarlo simulation, ABBA
Procedia PDF Downloads 1621722 A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling
Authors: Saba Riaz, Syed A. Hussain
Abstract:
This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators.Keywords: study variable, auxiliary variable, finite population variance, bias, asymptotic variance, percent relative efficiency
Procedia PDF Downloads 2251721 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 1441720 Behavioral Analysis of Anomalies in Intertemporal Choices Through the Concept of Impatience and Customized Strategies for Four Behavioral Investor Profiles With an Application of the Analytic Hierarchy Process: A Case Study
Authors: Roberta Martino, Viviana Ventre
Abstract:
The Discounted Utility Model is the essential reference for calculating the utility of intertemporal prospects. According to this model, the value assigned to an outcome is the smaller the greater the distance between the moment in which the choice is made and the instant in which the outcome is perceived. This diminution determines the intertemporal preferences of the individual, the psychological significance of which is encapsulated in the discount rate. The classic model provides a discount rate of linear or exponential nature, necessary for temporally consistent preferences. Empirical evidence, however, has proven that individuals apply discount rates with a hyperbolic nature generating the phenomenon of intemporal inconsistency. What this means is that individuals have difficulty managing their money and future. Behavioral finance, which analyzes the investor's attitude through cognitive psychology, has made it possible to understand that beyond individual financial competence, there are factors that condition choices because they alter the decision-making process: behavioral bias. Since such cognitive biases are inevitable, to improve the quality of choices, research has focused on a personalized approach to strategies that combines behavioral finance with personality theory. From the considerations, it emerges the need to find a procedure to construct the personalized strategies that consider the personal characteristics of the client, such as age or gender, and his personality. The work is developed in three parts. The first part discusses and investigates the weight of the degree of impatience and impatience decrease in the anomalies of the discounted utility model. Specifically, the degree of decrease in impatience quantifies the impact that emotional factors generated by haste and financial market agitation have on decision making. The second part considers the relationship between decision making and personality theory. Specifically, four behavioral categories associated with four categories of behavioral investors are considered. This association allows us to interpret intertemporal choice as a combination of bias and temperament. The third part of the paper presents a method for constructing personalized strategies using Analytic Hierarchy Process. Briefly: the first level of the analytic hierarchy process considers the goal of the strategic plan; the second level considers the four temperaments; the third level compares the temperaments with the anomalies of the discounted utility model; and the fourth level contains the different possible alternatives to be selected. The weights of the hierarchy between level 2 and level 3 are constructed considering the degrees of decrease in impatience derived for each temperament with an experimental phase. The results obtained confirm the relationship between temperaments and anomalies through the degree of decrease in impatience and highlight that the actual impact of emotions in decision making. Moreover, it proposes an original and useful way to improve financial advice. Inclusion of additional levels in the Analytic Hierarchy Process can further improve strategic personalization.Keywords: analytic hierarchy process, behavioral finance anomalies, intertemporal choice, personalized strategies
Procedia PDF Downloads 891719 A Study on the New Weapon Requirements Analytics Using Simulations and Big Data
Authors: Won Il Jung, Gene Lee, Luis Rabelo
Abstract:
Since many weapon systems are getting more complex and diverse, various problems occur in terms of the acquisition cost, time, and performance limitation. As a matter of fact, the experiment execution in real world is costly, dangerous, and time-consuming to obtain Required Operational Characteristics (ROC) for a new weapon acquisition although enhancing the fidelity of experiment results. Also, until presently most of the research contained a large amount of assumptions so therefore a bias is present in the experiment results. At this moment, the new methodology is proposed to solve these problems without a variety of assumptions. ROC of the new weapon system is developed through the new methodology, which is a way to analyze big data generated by simulating various scenarios based on virtual and constructive models which are involving 6 Degrees of Freedom (6DoF). The new methodology enables us to identify unbiased ROC on new weapons by reducing assumptions and provide support in terms of the optimal weapon systems acquisition.Keywords: big data, required operational characteristics (ROC), virtual and constructive models, weapon acquisition
Procedia PDF Downloads 2891718 Fixed Points of Contractive-Like Operators by a Faster Iterative Process
Authors: Safeer Hussain Khan
Abstract:
In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves and generalizes corresponding results in the literature in two ways: the iterative process is faster, operators are more general. In the end, we indicate that the results can also be proved with the iterative process with error terms.Keywords: contractive-like operator, iterative process, fixed point, strong convergence
Procedia PDF Downloads 4331717 Visual Overloaded on User-Generated Content by the Net Generation: Participatory Cultural Viewpoint
Authors: Hasanah Md. Amin
Abstract:
The existence of cyberspace and its growing contents is real and overwhelming. Visual as one of the properties of cyber contents is increasingly becoming more significant and popular among creator and user. The visual and aesthetic of the content is consistent with many similarities. Aesthetic, although universal, has slight differences across the world. Aesthetic power could impress, influence, and cause bias among the users. The content creator who knows how to manipulate this visuals and aesthetic expression can dominate the scenario and the user who is ‘expressive literate’ will gain much from the scenes. User who understands aesthetic will be rewarded with competence, confidence, and certainly, a personality enhanced experience in carrying out a task when participating in this chaotic but promising cyberworld. The aim of this article is to gain knowledge from related literature and research regarding User-Generated Content (UGC), which focuses on aesthetic expression by the Net generation. The objective of this preliminary study is to analyze the aesthetic expression linked to visual from the participatory cultural viewpoint looking for meaning, value, patterns, and characteristics.Keywords: visual overloaded, user-generated content, net generation, visual arts
Procedia PDF Downloads 4381716 Uncertainty of the Brazilian Earth System Model for Solar Radiation
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.Keywords: climate changes, projections, solar radiation, uncertainty
Procedia PDF Downloads 2501715 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research
Authors: Edvard P. G. Bruun
Abstract:
One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research
Procedia PDF Downloads 2351714 Projection of Solar Radiation for the Extreme South of Brazil
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini
Abstract:
This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.Keywords: climate change, projections, solar radiation, scenarios climate change
Procedia PDF Downloads 1511713 Priority of Goal Over Source in Persian Directional Motion Verbs
Authors: Tahereh Samenian
Abstract:
There is ample evidence that source and goal are disproportionately expressed in languages, and goal usually plays a more prominent role than source. The results show that the mismatch between the goal and the source is not entirely rooted in non-linguistic behaviors, i.e. that linguistic descriptions also show the focus of the goal on the source in events; Non-verbal memory for events, on the other hand, indicates that the focus of the goal is only on events that are purposefully moving and the actor is alive. In the present study, an attempt is made to examine the principle of priority of the goal over the source by focusing on Persian directional motion verbs. For this purpose, 117 Persian directional motion verbs have been selected from the dictionary and data for them have been collected from the body of Bijan Khan and the components of goal and source have been identified in sentences and the prominence of the components of goal and source has been shown in the form of diagrams. As it was obtained from the data, Persian motion-directional verbs also showed the bias of the goal over source in motion events.Keywords: motion-directional verbs, priority of goal over source principle, cognitive factors, linguistic factors
Procedia PDF Downloads 871712 Political Connections, Business Strategy and Tax Aggressiveness: Evidence from China
Authors: Liqiang Chen
Abstract:
This study investigates the effects of political connections on the association between firms’ business strategy and their tax aggressiveness in an emerging economy such as China. By studying all public Chinese firms in the period from 2011 to 2017, we find that firms adopting innovative business strategy are more tax aggressive overall, but innovative firms with political connections are less tax aggressive compared to those without political connections. Moreover, we document several channels through which political connections affect the association between innovative business strategy and tax aggressiveness. In particular, we show that the mitigation effect of political connections on tax aggressiveness is stronger for innovative firms located in areas with a lower marketization index and for innovative firms with a lower leverage level or with less earnings management. Our results are robust to an instrumental variable approach to account for possible endogenous bias. Our study contributes to the understanding of firms’ tax behaviors in an emerging economy setting and suggests that there are costs associated with political connections, such as foregone tax saving opportunities, which are understudied in the prior literature.Keywords: tax aggressiveness, business strategy, political connections, emerging economy
Procedia PDF Downloads 1241711 Do Industry Expert Audit Engagement Partners Earn Fee Premiums? Evidence from Labor Usage and the Hourly Charge Rate
Authors: Gil Bae, Seung Uk Choi, Jae Eun Lee, Joon Hwa Rho
Abstract:
Using proprietary engagement partner identity information for the Big 4 audit firms in Korea over the 2001-2011 period, we find that expert engagement partners obtain significantly higher total compensation than do non-expert partners. Importantly, we also find that expert partners increase the number of audit hours compared to their non-expert counterparts. The hourly billing rate, calculated as total fees divided by total audit hours, of expert partners is not higher than that of non-expert partners, indicating that there is no expert partner premium reflected in the hourly rate. This finding suggests that the increase in total audit fees is attributable mainly to the increase in the quantity of audit hours that expert partners work, not from the higher fee per hour. The results are not attributable to auditor selection bias.Keywords: industry expert partners, expert premiums, audit hours, hourly charge rate
Procedia PDF Downloads 3061710 Spectrophotometric Determination of Phenylephrine Hydrochloride by Coupling with Diazotized 2,4-Dinitroaniline
Authors: Sulaiman Gafar Muhamad
Abstract:
A rapid spectrophotometric method for the micro-determination of phenylephrine-HCl (PHE) has been developed. The proposed method involves the coupling of phenylephrine-HCl with diazotized 2,4-dinitroaniline in alkaline medium at λmax 455 nm. Under the present optimum condition, Beer’s law was obeyed in the range of 1.0-20 μg/ml of PHE with molar absorptivity of 1.915 ×104 l. mol-1.cm-1, with a relative error of 0.015 and a relative standard deviation of 0.024%. The current method has been applied successfully to estimate phenylephrine-HCl in pharmaceutical preparations (nose drop and syrup).Keywords: diazo-coupling, 2, 4-dinitroaniline, phenylephrine-HCl, spectrophotometry
Procedia PDF Downloads 2571709 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 1371708 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 1391707 Local Gambling Attitudes, Corporate R&D Investment and Long-Term Financial Performance
Authors: Hong Fan, Lifang Gao, Feng Zhan
Abstract:
This paper examines the influence of local gambling attitudes on a firm's long-term financial performance. Firms located in gambling-prone regions may be more willing to take risks, thus spending more on innovative projects. However, firms in such regions may also be likely to choose projects impulsively and allocate resources inefficiently. By studying Chinese publicly listed firms from 2010 to 2017, we find that firms in more gambling-prone regions invest more in R&D. Both local gambling attitudes and firms’ R&D spending are positively associated with firms’ long-term financial performance. More importantly, our study reveals that the positive impact of R&D spending on firms’ long-term financial performance is weakened by gambling-friendly attitudes, probably because firms in gambling-prone regions are more likely to overinvest in risky projects. This effect is stronger for larger firms, state-owned enterprises (SOEs), firms with more government subsidies, and firms with weaker internal control.Keywords: regional gambling attitudes, long-term financial performance, R&D, risk, local bias
Procedia PDF Downloads 1141706 Efficacy and Safety of Sublingual Sufentanil for the Management of Acute Pain
Authors: Neil Singla, Derek Muse, Karen DiDonato, Pamela Palmer
Abstract:
Introduction: Pain is the most common reason people visit emergency rooms. Studies indicate however, that Emergency Department (ED) physicians often do not provide adequate analgesia to their patients as a result of gender and age bias, opiophobia and insufficient knowledge of and formal training in acute pain management. Novel classes of analgesics have recently been introduced, but many patients suffer from acute pain in settings where the availability of intravenous (IV) access may be limited, so there remains a clinical need for rapid-acting, potent analgesics that do not require an invasive route of delivery. A sublingual sufentanil tablet (SST), dispensed using a single-dose applicator, is in development for treatment of moderate-to-severe acute pain in a medically-supervised setting. Objective: The primary objective of this study was to demonstrate the repeat-dose efficacy, safety and tolerability of sufentanil 20 mcg and 30 mcg sublingual tablets compared to placebo for the management of acute pain as determined by the time-weighted sum of pain intensity differences (SPID) to baseline over the 12-hour study period (SPID12). Key secondary efficacy variables included SPID over the first hour (SPID1), Total pain relief over the 12-hour study period (TOTPAR12), time to perceived pain relief (PR) and time to meaningful PR. Safety variables consisted of adverse events (AE), vital signs, oxygen saturation and early termination. Methods: In this Phase 2, double-blind, dose-finding study, an equal number of male and female patients were randomly assigned in a 2:2:1 ratio to SST 20 mcg, SS 30 mcg or placebo, respectively, following bunionectomy. Study drug was dosed as needed, but not more frequently than hourly. Rescue medication was available as needed. The primary endpoint was the Summed Pain Intensity Difference to baseline over 12h (SPIDI2). Safety was assessed by continuous oxygen saturation monitoring and adverse event reporting. Results: 101 patients (51 Male/50 Female) were randomized, 100 received study treatment (intent-to-treat [ITT] population), and 91 completed the study. Reasons for early discontinuation were lack of efficacy (6), adverse events (2) and drug-dosing error (1). Mean age was 42.5 years. For the ITT population, SST 30 mcg was superior to placebo (p=0.003) for the SPID12. SPID12 scores in the active groups were superior for both male (ANOVA overall p-value =0.038) and female (ANOVA overall p-value=0.005) patients. Statistically significant differences in favour of sublingual sufentanil were also observed between the SST 30mcg and placebo group for SPID1(p<0.001), TOTPAR12(p=0.002), time to perceived PR (p=0.023) and time to meaningful PR (p=0.010). Nausea, vomiting and somnolence were more frequent in the sufentanil groups but there were no significant differences between treatment arms for the proportion of patients who prematurely terminated due to AE or inadequate analgesia. Conclusions: Sufentanil tablets dispensed sublingually using a single-dose applicator is in development for treatment of patients with moderate-to-severe acute pain in a medically-supervised setting where immediate IV access is limited. When administered sublingually, sufentanil’s pharmacokinetic profile and non-invasive delivery makes it a useful alternative to IM or IV dosing.Keywords: acute pain, pain management, sublingual, sufentanil
Procedia PDF Downloads 3561705 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments
Authors: Xiaoqin Wang, Li Yin
Abstract:
Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.Keywords: causal effect, point effect, statistical modelling, sequential causal inference
Procedia PDF Downloads 2051704 Security System for Safe Transmission of Medical Image
Authors: Mohammed Jamal Al-Mansor, Kok Beng Gan
Abstract:
This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage.Keywords: AES, DWT, genetic algorithm, watermarking
Procedia PDF Downloads 4111703 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 801702 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations
Authors: Helmi Temimi
Abstract:
In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates
Procedia PDF Downloads 4781701 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 3101700 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications
Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik
Abstract:
The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT
Procedia PDF Downloads 3441699 Exploiting Fast Independent Component Analysis Based Algorithm for Equalization of Impaired Baseband Received Signal
Authors: Muhammad Umair, Syed Qasim Gilani
Abstract:
A technique using Independent Component Analysis (ICA) for blind receiver signal processing is investigated. The problem of the receiver signal processing is viewed as of signal equalization and implementation imperfections compensation. Based on this, a model similar to a general ICA problem is developed for the received signal. Then, the use of ICA technique for blind signal equalization in the time domain is presented. The equalization is regarded as a signal separation problem, since the desired signal is separated from interference terms. This problem is addressed in the paper by over-sampling of the received signal. By using ICA for equalization, besides channel equalization, other transmission imperfections such as Direct current (DC) bias offset, carrier phase and In phase Quadrature phase imbalance will also be corrected. Simulation results for a system using 16-Quadraure Amplitude Modulation(QAM) are presented to show the performance of the proposed scheme.Keywords: blind equalization, blind signal separation, equalization, independent component analysis, transmission impairments, QAM receiver
Procedia PDF Downloads 2141698 Elitism: Navigating Professional Diversity Barriers
Authors: Rachel Nir, Tina Mckee
Abstract:
In the UK, reliance has been placed on the professions to ‘heal themselves’ in improving equality and diversity. This approach has faltered, in part due to the global economic climate, and stimulus is needed to make faster equality progress. Recent empirical evidence has identified specific diversity barriers, namely: the cost of training; the use of high school grades as a primary selection criteria; the significance of prior work experience in recruitment decisions; and recruitment from elite universities. Students from majority groups and affluent backgrounds are advantaged over their counterparts. We as educators are passionate about resisting this. We believe that education can be a key agent of change. As part of this belief, the presenters have recently designed learning and teaching materials for the 2015/16 academic year. These are aimed at undergraduate law students for the purpose of 1) educating them on career barriers; 2) helping them to develop personal strategies to overcome them; and 3) encouraging them to address their own biases, both conscious and implicit, so that they, themselves, may be fairer employers and managers in the future.Keywords: career barriers, challenging professional bias, education, elitism, personal student strategies
Procedia PDF Downloads 2371697 Self-Overestimation and Underestimation of Others: A Catalyst for Religious Conflict in Nigeria
Authors: Abdulazeez Balogun Shittu
Abstract:
This study investigates the role of self-overestimation and underestimation of others in fueling religious conflicts in Nigeria. Using a mixed-methods approach, this research examines how exaggerated self-perceptions and diminished views of others contribute to intergroup tensions, stereotypes, and violence. The findings reveal that self-overestimation and underestimation of others are significant predictors of religious conflict, mediated by factors such as intergroup bias, social identity, cultural narratives and lack of interfaith dialogue. The study also identifies the consequences of these biases, including Escalated sectarian violence, social cohesion erosion and polarized communities. To mitigate these effects, the research recommends interfaith education and dialogue initiatives, inclusive governance and policy frameworks and pluralistic media representation. This study contributes to the understanding of psychological and social dynamics driving religious conflict in Nigeria, informing evidence-based policies and interventions to promote peaceful coexistence.Keywords: conflict resolution, intergroup relations, Nigeria, Religious conflict, self-overestimation, social psychology, underestimation of others
Procedia PDF Downloads 14