Search results for: logistic regression with random effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15112

Search results for: logistic regression with random effects

14332 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 119
14331 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM Cell, Read Access Time, Retention Time, Average Power dissipation

Procedia PDF Downloads 313
14330 Factors Influencing Disclosure and CSR Spending in Indian Companies: An Econometric Analysis

Authors: Shekar Babu, Amalendu Jyothishi

Abstract:

The New Companies Bill-2013 in India has mandated all the companies with a certain profit to spend on Corporate Social Responsibility (CSR). Despite the Corporate Governance (CG) compliances at the strategic level the firms have to engage in social good. For both the Central Public Sector Enterprises (CPSE) and the private companies in India the need for strategic CSR focus through operational efficiency measures are mandated. In this paper the focus is to find out if the Indian companies understand their responsibility towards the society despite government making CSR mandatory. Analyzing both the CPSEs and Private companies the researchers find out which set of companies behave responsibly towards the society. Does any particular industry group(s) impact the society by disclosing their CSR spending activities. The key financial and non-financial parameters that influence CSR spending were identified and through econometric analysis methodologies (logistic regression and OLS models) the results were analyzed. The innovative methods were developed to identify if the firms operate efficiently and at the same time complying with the new CSR laws. An innovative matrix was developed to explain how companies could operate efficiently and be compliant in parallel how some of the companies can strategically realign their spending by operating efficiently.

Keywords: corporate social responsibility(CSR), corporate governance(CG), India, logit function, ordinary least squares (OLS)

Procedia PDF Downloads 355
14329 Determinants of Success of University Industry Collaboration in the Science Academic Units at Makerere University

Authors: Mukisa Simon Peter Turker, Etomaru Irene

Abstract:

This study examined factors determining the success of University-Industry Collaboration (UIC) in the science academic units (SAUs) at Makerere University. This was prompted by concerns about weak linkages between industry and the academic units at Makerere University. The study examined institutional, relational, output, and framework factors determining the success of UIC in the science academic units at Makerere University. The study adopted a predictive cross-sectional survey design. Data was collected using a questionnaire survey from 172 academic staff from the six SAUs at Makerere University. Stratified, proportionate, and simple random sampling techniques were used to select the samples. The study used descriptive statistics and linear multiple regression analysis to analyze data. The study findings reveal a coefficient of determination (R-square) of 0.403 at a significance level of 0.000, suggesting that UIC success was 40.3% at a standardized error of estimate of 0.60188. The strength of association between Institutional factors, Relational factors, Output factors, and Framework factors, taking into consideration all interactions among the study variables, was at 64% (R= 0.635). Institutional, Relational, Output and Framework factors accounted for 34% of the variance in the level of UIC success (adjusted R2 = 0.338). The remaining variance of 66% is explained by factors other than Institutional, Relational, Output, and Framework factors. The standardized coefficient statistics revealed that Relational factors (β = 0.454, t = 5.247, p = 0.000) and Framework factors (β = 0.311, t = 3.770, p = 0.000) are the only statistically significant determinants of the success of UIC in the SAU in Makerere University. Output factors (β = 0.082, t =1.096, p = 0.275) and Institutional factors β = 0.023, t = 0.292, p = 0.771) turned out to be statistically insignificant determinants of the success of UIC in the science academic units at Makerere University. The study concludes that Relational Factors and Framework Factors positively and significantly determine the success of UIC, but output factors and institutional factors are not statistically significant determinants of UIC in the SAUs at Makerere University. The study recommends strategies to consolidate Relational and Framework Factors to enhance UIC at Makerere University and further research on the effects of Institutional and Output factors on the success of UIC in universities.

Keywords: university-industry collaboration, output factors, relational factors, framework factors, institutional factors

Procedia PDF Downloads 61
14328 Correlation of IFNL4 ss469415590 and IL28B rs12979860 with the Hepatitis C Virus Treatment Response among Tunisian Patients

Authors: Khaoula Azraiel, Mohamed Mehdi Abassi, Amel Sadraoui, Walid Hammami, Azouz Msaddek, Imed Cheikh, Maria Mancebo, Elisabet Perez-Navarro, Antonio Caruz, Henda Triki, Ahlem Djebbi

Abstract:

IL28B rs12979860 genotype is confirmed as an important predictor of response to peginterferon/ribavirin therapy in patients with chronic hepatitis C (CHC). IFNL4 ss469415590 is a newly discovered polymorphism that could also affect the sustained virological response (SVR). The aim of this study was to evaluate the association of IL28B and IFNL4 genotypes with peginterferon/ribavirin treatment response in Tunisians patients with CHC and to determine which of these SNPs, was the stronger marker. A total of 120 patients were genotyped for both rs12979860 and ss469415590 polymorphisms. The association of each genetic marker with SVR was analyzed and comparison between the two SNPs was calculated by logistic regression models. For rs12979860, 69.6% of patients with CC, 41.8% with CT and 42.8% with TT achieved SVR (p = 0.003). Regarding ss469415590, 70.4% of patients with TT/TT genotype achieved SVR compared to 42.8% with TT/ΔG and 37.5% with ΔG /ΔG (p = 0.002). The presence of CC and TT/TT genotypes was independently associated with treatment response with an OR of 3.86 for each. In conclusion, both IL28B rs12979860 and IFNL4 ss469415590 variants were associated with response to pegIFN/RBV in Tunisian patients, without any additional benefit in performance for IFNL4. Our results are different from those detected in Sub-Saharan Africa countries.

Keywords: Hepatitis C virus, IFNL4, IL28B, Peginterferon/ribavirin, polymorphism

Procedia PDF Downloads 338
14327 Upward Spread Forced Smoldering Phenomenon: Effects and Applications

Authors: Akshita Swaminathan, Vinayak Malhotra

Abstract:

Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.

Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering

Procedia PDF Downloads 144
14326 Influence of Causal beliefs on self-management in Korean patients with hypertension

Authors: Hyun-E Yeom

Abstract:

Patients’ views about the cause of hypertension may influence their present and proactive behaviors to regulate high blood pressure. This study aimed to examine the internal structure underlying the causal beliefs about hypertension and the influence of causal beliefs on self-care intention and medical compliance in Korean patients with hypertension. The causal beliefs of 145 patients (M age = 57.7) were assessed using the Illness Perception Questionnaire-Revised. An exploratory factor analysis was used to identify the factor structure of the causal beliefs, and the factors’ influence on self-care intention and medication compliance was analyzed using multiple and logistic regression analyses. The four-factor structure including psychological, fate-related, risk and habitual factors was identified and the psychological factor was the most representative component of causal beliefs. The risk and fate-related factors were significant factors affecting lower intention to engage in self-care and poor compliance with medication regimens, respectively. The findings support the critical role of causal beliefs about hypertension in driving patients’ current and future self-care behaviors. This study highlights the importance of educational interventions corresponding to patients’ awareness of hypertension for improving their adherence to a healthy lifestyle and medication regimens.

Keywords: hypertension, self-care, beliefs, medication compliance

Procedia PDF Downloads 351
14325 Characterization of Optical Communication Channels as Non-Deterministic Model

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford

Abstract:

Increasingly telecommunications sectors are adopting optical technologies, due to its ability to transmit large amounts of data over long distances. However, as in all systems of data transmission, optical communication channels suffer from undesirable and non-deterministic effects, being essential to know the same. Thus, this research allows the assessment of these effects, as well as their characterization and beneficial uses of these effects.

Keywords: optical communication, optical fiber, non-deterministic effects, telecommunication

Procedia PDF Downloads 788
14324 Fish Scales as a Nonlethal Screening Tools for Assessing the Effects of Surface Water Contaminants in Cyprinus Carpio

Authors: Shahid Mahboob, Hafiz Muhammad Ashraf, Salma Sultana, Tayyaba Sultana, Khalid Al-Ghanim, Fahid Al-Misned, Zubair Ahmedd

Abstract:

There is an increasing need for an effective tool to estimate the risks derived from the large number of pollutants released to the environment by human activities. Typical screening procedures are highly invasive or lethal to the fish. Recent studies show that fish scales biochemically respond to a range of contaminants, including toxic metals, organic compounds, and endocrine disruptors. The present study evaluated the effects of the surface water contaminants on Cyprinus carpio in the Ravi River by comparing DNA extracted non-lethally from their scales to DNA extracted from the scales of fish collected from a controlled fish farm. A single, random sampling was conducted. Fish were broadly categorised into three weight categories (W1, W2 and W3). The experimental samples in the W1, W2 and W3 categories had an average DNA concentration (µg/µl) that was lower than the control samples. All control samples had a single DNA band; whereas the experimental samples in W1 fish had 1 to 2 bands, the experimental samples in W2 fish had two bands and the experimental samples in W3 fish had fragmentation in the form of three bands. These bands exhibit the effects of pollution on fish in the Ravi River. On the basis findings of this study, we propose that fish scales can be successfully employed as a new non-lethal tool for the evaluation of the effect of surface water contaminants.

Keywords: fish scales, Cyprinus carpio, heavy metals, non-invasive, DNA fragmentation

Procedia PDF Downloads 414
14323 The Role of Environmental Analysis in Managing Knowledge in Small and Medium Sized Enterprises

Authors: Liu Yao, B. T. Wan Maseri, Wan Mohd, B. T. Nurul Izzah, Mohd Shah, Wei Wei

Abstract:

Effectively managing knowledge has become a vital weapon for businesses to survive or to succeed in the increasingly competitive market. But do they perform environmental analysis when managing knowledge? If yes, how is the level and significance? This paper established a conceptual framework covering the basic knowledge management activities (KMA) to examine their contribution towards organizational performance (OP). Environmental analysis (EA) was then investigated from both internal and external aspects, to identify its effects on that contribution. Data was collected from 400 Chinese SMEs by questionnaires. Cronbach's α and factor analysis were conducted. Regression results show that the external analysis presents higher level than internal analysis. However, the internal analysis mediates the effects of external analysis on the KMA-OP relation and plays more significant role in the relation comparing with the external analysis. Thus, firms shall improve environmental analysis especially the internal analysis to enhance their KM practices.

Keywords: knowledge management, environmental analysis, performance, mediating, small sized enterprises, medium sized enterprises

Procedia PDF Downloads 615
14322 The Methods of Customer Satisfaction Measurement and Its Statistical Analysis towards Sales and Logistic Activities in Food Sector

Authors: Seher Arslankaya, Bahar Uludağ

Abstract:

Meeting the needs and demands of customers and pleasing the customers are important requirements for companies in food sectors where the growth of competition is significantly unpredictable. Customer satisfaction is also one of the key concepts which is mainly driven by wide range of customer preference and expectation upon products and services introduced and delivered to them. In order to meet the customer demands, the companies that engage in food sectors are expected to have a well-managed set of Total Quality Management (TQM), which sets out to improve quality of products and services; to reduce costs and to increase customer satisfaction by restructuring traditional management practices. It aims to increase customer satisfaction by meeting (their) customer expectations and requirements. The achievement would be determined with the help of customer satisfaction surveys, which is done to obtain immediate feedback and to provide quick responses. In addition, the surveys would also assist the making of strategic planning which helps to anticipate customer future needs and expectations. Meanwhile, periodic measurement of customer satisfaction would be a must because with the better understanding of customers perceptions from the surveys (done by questioners), the companies would have a clear idea to identify their own strengths and weaknesses that help the companies keep their loyal customers; to stand in comparison toward their competitors and map out their future progress and improvement. In this study, we propose a survey based on customer satisfaction measurement method and its statistical analysis for sales and logistic activities of food firms. Customer satisfaction would be discussed in details. Furthermore, after analysing the data derived from the questionnaire that applied to customers by using the SPSS software, various results obtained from the application would be presented. By also applying ANOVA test, the study would analysis the existence of meaningful differences between customer demographic proportion and their perceptions. The purpose of this study is also to find out requirements which help to remove the effects that decrease customer satisfaction and produce loyal customers in food industry. For this purpose, the customer complaints are collected. Additionally, comments and suggestions are done according to the obtained results of surveys, which would be useful for the making-process of strategic planning in food industry.

Keywords: customer satisfaction measurement and analysis, food industry, SPSS, TQM

Procedia PDF Downloads 250
14321 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
14320 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations

Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana

Abstract:

Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.

Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS

Procedia PDF Downloads 262
14319 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 185
14318 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 363
14317 A Generalized Family of Estimators for Estimation of Unknown Population Variance in Simple Random Sampling

Authors: Saba Riaz, Syed A. Hussain

Abstract:

This paper is addressing the estimation method of the unknown population variance of the variable of interest. A new generalized class of estimators of the finite population variance has been suggested using the auxiliary information. To improve the precision of the proposed class, known population variance of the auxiliary variable has been used. Mathematical expressions for the biases and the asymptotic variances of the suggested class are derived under large sample approximation. Theoretical and numerical comparisons are made to investigate the performances of the proposed class of estimators. The empirical study reveals that the suggested class of estimators performs better than the usual estimator, classical ratio estimator, classical product estimator and classical linear regression estimator. It has also been found that the suggested class of estimators is also more efficient than some recently published estimators.

Keywords: study variable, auxiliary variable, finite population variance, bias, asymptotic variance, percent relative efficiency

Procedia PDF Downloads 225
14316 Impact of Meaning in Life on Stress and Psychological Well-Being

Authors: Aisha Bano, Rizwan Nazir

Abstract:

The present study aimed at exploring the impact of meaning in life on psychological well-being and stress among university students. Victor Frankl's paradigm provided the theoretical foundation for this study. A sample of 560 university students was drawn from Quaid-i-Azam University Islamabad. The sample was drawn using stratified random sampling technique. Data were collected using Existence Scale, Warwick-Edinburg Mental Well-Being Scale, and Stress Scale. Results of linear regression analysis reveals that high perception of meaning in life will lead to high psychological well-being and low stress among university students. Non-significant differences are found on meaning in life variable with regard to gender in the sample using t-test. Together these results suggest that meaning in life independent of gender, is a significant predictor of the levels of stress and psychological well-being being directly related to psychological well-being and inversely related to stress levels.

Keywords: existential meaning in life, psychological well-being, stress, students

Procedia PDF Downloads 506
14315 Suicidal Ideation and Associated Factors among Students Aged 13-15 Years in Association of Southeast Asian Nations (ASEAN) Member States, 2007-2014

Authors: Karl Peltzer, Supa Pengpid

Abstract:

Introduction: The aim of this study was to assess suicidal ideation and associated factors in school-going adolescents in the Association of Southeast Asian Nations (ASEAN) Member States. Methods: The analysis included 30284 school children aged 13-15 years from seven ASEAN that participated in the cross-sectional Global School-based Student Health Survey (GSHS) between 2007 and 2013. Results: The overall prevalence of suicidal ideation across seven ASEAN countries (excluding Brunei) was 12.3%, significantly higher in girls (15.1%) than boys (9.3%). Among eight ASEAN countries with the highest prevalence of suicidal ideation was in the Philippines (17.0%) and Vietnam (16.9%) and the lowest in Myanmar (1.1%) and Indonesia (4.2%). In multivariate logistic regression analysis, female gender, older age (14 or 15 years), living in a low income or lower middle income country, having no friends, loneliness, bullying victimization, having been in a physical fight in the past 12 months, lack of parental or guardian support, tobacco use and having a history of ever got drunk were associated with suicidal ideatiion. Conclusion: Different rates of suicidal ideation were observed in ASEAN member states. Several risk factors for suicidal ideation were identified which can help guide preventive efforts.

Keywords: adolesents, ASEAN, correlates, suicidal behaviour

Procedia PDF Downloads 269
14314 Effects of Peakedness of Bimodal Waves on Overtopping of Sloping Seawalls

Authors: Stephen Orimoloye, Jose Horrillo-Caraballo, Harshinie Karunarathna, Dominic E. Reeve

Abstract:

Prediction of wave overtopping is an essential component of coastal seawall designing and management. Not only that excessive overtopping is reported for impermeable seawalls under bimodal waves, but overtopping is also showing a high sensitivity to the peakedness of the random wave propagation patterns. In the present study, we present a comprehensive analysis of the effects of peakedness of bimodal wave patterns of the overtopping of sloping seawalls. An energy-conserved bimodal spectrum with four different spectra peak periods and swell percentages was applied to estimate wave overtopping in both numerical and experimental flumes. Results of incident surface elevations and bimodal spectra were accurately captured across the flume domain using sets of well-positioned resistant-type wave gauges. Peakedness characteristics of the wave patterns were extracted to derive a relationship between the non-dimensional overtopping and the peakedness across the wave groups in the wave series. The full paper will briefly describe the development of the spectrum and present a comprehensive results analysis leading to the derivation of the relationship between dimensionless overtopping and peakedness of bimodal waves.

Keywords: wave overtopping, peakedness, bimodal waves, swell percentages

Procedia PDF Downloads 181
14313 The Modelling of Real Time Series Data

Authors: Valeria Bondarenko

Abstract:

We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.

Keywords: mathematical model, random process, Wiener process, fractional Brownian motion

Procedia PDF Downloads 358
14312 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 143
14311 Exploration of Abuse of Position for Sexual Gain by UK Police

Authors: Terri Cole, Fay Sweeting

Abstract:

Abuse of position for sexual gain by police is defined as behavior involving individuals taking advantage of their role to pursue a sexual or improper relationship. Previous research has considered whether it involves ‘bad apples’ - individuals with poor moral ethos or ‘bad barrels’ – broader organizational flaws which may unconsciously allow, minimize, or do not effectively deal with such behavior. Low level sexual misconduct (e.g., consensual sex on duty) is more common than more serious offences (e.g., rape), yet the impact of such behavior can have severe implications not only for those involved but can also negatively undermine public confidence in the police. This ongoing, collaborative research project has identified variables from 514 historic case files from 35 UK police forces in order to identify potential risk indicators which may lead to such behavior. Quantitative analysis using logistic regression and the Cox proportion hazard model has resulted in the identification of specific risk factors of significance in prediction. Factors relating to both perpetrator background such as a history of intimate partner violence, debt, and substance misuse coupled with in work behavior such as misusing police systems increase the risk. Findings are able to provide pragmatic recommendations for those tasked with identifying potential or investigating suspected perpetrators of misconduct.

Keywords: abuse of position, forensic psychology, misconduct, sexual abuse

Procedia PDF Downloads 194
14310 Prediction on the Pursuance of Separation of Catalonia from Spain

Authors: Francis Mark A. Fernandez, Chelca Ubay, Armithan Suguitan

Abstract:

Regions or provinces in a definite state certainly contribute to the economy of their mainland. These regions or provinces are the ones supplying the mainland with different resources and assets. Thus, with a certain region separating from the mainland would indeed impinge the heart of an entire state to develop and expand. With these, the researchers decided to study on the effects of the separation of one’s region to its mainland and the consequences that will take place if the mainland would rule out the region to separate from them. The researchers wrote this paper to present the causes of the separation of Catalonia from Spain and the prediction regarding the pursuance of this region to revolt from its mainland, Spain. In conducting this research, the researchers utilized two analyses, namely: qualitative and quantitative. In qualitative, numerous of information regarding the existing experiences of the citizens of Catalonia were gathered by the authors to give certainty to the prediction of the researchers. Besides this undertaking, the researchers will also gather needed information and figures through books, journals and the published news and reports. In addition, to further support this prediction under qualitative analysis, the researchers intended to operate the Phenomenological research in which the examiners will exemplify the lived experiences of each citizen in Catalonia. Moreover, the researchers will utilize one of the types of Phenomenological research which is hermeneutical phenomenology by Van Manen. In quantitative analysis, the researchers utilized the regression analysis in which it will ascertain the causality in an underlying theory in understanding the relationship of the variables. The researchers assigned and identified different variables, wherein the dependent variable or the y which represents the prediction of the researchers, the independent variable however or the x represents the arising problems that grounds the partition of the region, the summation of the independent variable or the ∑x represents the sum of the problem and finally the summation of the dependent variable or the ∑y is the result of the prediction. With these variables, using the regression analysis, the researchers will be able to show the connections and how a single variable could affect the other variables. From these approaches, the prediction of the researchers will be specified. This research could help different states dealing with this kind of problem. It will further help certain states undergoing this problem by analyzing the causes of these insurgencies and the effects on it if it will obstruct its region to consign their full-pledge autonomy.

Keywords: autonomy, liberty, prediction, separation

Procedia PDF Downloads 250
14309 Some Factors Affecting to Farm Size of Duck Farming

Authors: Veronica Sri Lestari, Ahmad Ramadhan Siregar

Abstract:

The purpose of this research was to know some factors affecting farm size of duck farming (case study in Pinrang district, South Sulawesi). This research was conducted in 2013. Total sample was 45 duck farmers which were selected from 6 regions in Mattiro Sompe sub district, Pinrang district, South Sulawesi province through stratified random sampling. Data were collected through interviews using questionnaires and observation. Multiple regression equation was used to analyze the data. Dependent variable was duck population, while age of respondents, farming experience, land size, education, and income level as independent variables. This research revealed that R2 was 0.920. Simultaneously, age of respondents, farming experience, land size, education, and income level significantly influenced farm size of duck farming (P < 1%). Only income influenced farm size of duck farming (P < 1%).

Keywords: duck, dry system, factors, farm-size

Procedia PDF Downloads 504
14308 Social Economy Effects on Wetlands Change in China during Three Decades Rapid Growth Period

Authors: Ying Ge

Abstract:

Wetlands are one of the essential types of ecosystems in the world. They are of great value to human society thanks to their special ecosystem functions and services, such as protecting biodiversity, adjusting hydrology and climate, providing essential habitats and, products and tourism resources. However, wetlands worldwide are degrading severely due to climate change, accelerated urbanization, and rapid economic development. Both nature and human factors drive wetland change, and the influences are variable from wetland types. Thus, the objectives of this study were to (1) to compare the changes in China’s wetland area during the three decades rapid growth period (1978-2008); (2) to analyze the effects of social economy and environmental factors on wetlands change (area loss and change of wetland types) in China during the high-speed economic development. The socio-economic influencing factors include population, income, education, development of agriculture, industry, infrastructure, wastewater amount, etc. Several statistical methods (canonical correlation analysis, principal component analysis, and regression analysis) were employed to analyze the relationship between socio-economic indicators and wetland area change. This study will determine the relevant driving socio-economic factors on wetland changes, which is of great significance for wetland protection and management.

Keywords: socioeconomic effects, China, wetland change, wetland type

Procedia PDF Downloads 78
14307 Effect of the Aluminium Concentration on the Laser Wavelength of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Samir Bentata, Fatima Bendahma

Abstract:

We have numerically investigated the effect of Aluminium concentration on the the laser wavelength of random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) with intentional correlated disorder. The method is based on Airy function formalism and the transfer-matrix technique. We discuss the impact of the Aluminium concentration associate to the structure profile on the laser wavelengths.

Keywords: superlattices, correlated disorder, transmission coefficient, laser wavelength

Procedia PDF Downloads 337
14306 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns

Authors: Fawaz Abdulmalek

Abstract:

The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.

Keywords: flowshop scheduling, random failures, johnson rule, simulation

Procedia PDF Downloads 339
14305 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura

Abstract:

Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 129
14304 Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design

Authors: Semra Çoruh, Yusuf Tibet

Abstract:

Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green.

Keywords: malachite green, adsorption, red mud, fly ash, full factorial design

Procedia PDF Downloads 476
14303 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 381