Search results for: hyperspectral imaging (HSI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1337

Search results for: hyperspectral imaging (HSI)

557 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 225
556 Minimal Incision Cochlear Implantation in Congenital Abnormality: A Case Report

Authors: Munish Saroch, Amit Saini

Abstract:

Introduction: Many children with congenital malformation of inner ear have undergone cochlear implant (CI) surgery. The results for cochlear implant surgery in these children are very encouraging and provide a ray of hope for these patients. Objective: The main objective of this presentation is to prove that even in Mondini’s deformity Minimal incision cochlear implantation improves cosmesis, reduces post-operative infection and earliest switch on of device. Methods: We report a case of two-year-old child suffering from Mondini’s deformity who underwent CI with minimal incision cochlear implantation (MICI). MICI has been developed with the aims of reducing the impact of surgery on the patient without any preoperative shaving of hairs. Results: Patient after surgery with MICI showed better looking postauricular scar, low post-operative morbidity in comparison to conventional wider access approach and hence earliest switch on of device (1st post operative day). Conclusion: We are of opinion that MICI is safe and successful in Mondini’s deformity.

Keywords: CI, Cochlear Implant, MICI, Minimal Incision Cochlear Implantation, HL, Hearing Loss, HRCT, High Resolution Computer Tomography, MRI, Magnetic resonance imaging, SCI, Standard cochlear implantation

Procedia PDF Downloads 218
555 Study of Early Diagnosis of Oral Cancer by Non-invasive Saliva-On-Chip Device: A Microfluidic Approach

Authors: Ragini Verma, J. Ponmozhi

Abstract:

The oral cavity is home to a wide variety of microorganisms that lead to various diseases and even oral cancer. Despite advancements in the diagnosis and detection at the initial phase, the situation hasn’t improved much. Saliva-on-a-chip is an innovative point-of-care platform for early diagnosis of oral cancer and other oral diseases in live and dead cells using a microfluidic device with a current perspective. Some of the major challenges, like real-time imaging of the oral cancer microbes, high throughput values, obtaining a high spatiotemporal resolution, etc. were faced by the scientific community. Integrated microfluidics and microscopy provide powerful approaches to studying the dynamics of oral pathology, microbe interaction, and the oral microenvironment. Here we have developed a saliva-on-chip (salivary microbes) device to monitor the effect on oral cancer. Adhesion of cancer-causing F. nucleatum; subsp. Nucleatum and Prevotella intermedia in the device was observed. We also observed a significant reduction in the oral cancer growth rate when mortality and morbidity were induced. These results show that this approach has the potential to transform the oral cancer and early diagnosis study.

Keywords: microfluidic device, oral cancer microbes, early diagnosis, saliva-on-chip

Procedia PDF Downloads 105
554 Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance

Authors: Najoua El Hajjaji El Idrissi, Necip Gokhan Kasapoglu

Abstract:

Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy.

Keywords: classification, synthetic aperture radar, SAR polarimetry, support vector machine, mahalanobis distance

Procedia PDF Downloads 133
553 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications

Authors: Najib Al-Fadhali, Huda Majid

Abstract:

In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.

Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications

Procedia PDF Downloads 86
552 Assessing Arterial Blockages Using Animal Model and Computational Fluid Dynamics

Authors: Mohammad Al- Rawi, Ahmad Al- Jumaily

Abstract:

This paper investigates the effect of developing arterial blockage at the abdominal aorta on the blood pressure waveform at an externally accessible location suitable for invasive measurements such as the brachial and the femoral arteries. Arterial blockages are created surgically within the abdominal aorta of healthy Wistar rats to create narrowing resemblance conditions. Blood pressure waveforms are measured using a catheter inserted into the right femoral artery. Measurements are taken at the baseline healthy condition as well as at four different severities (20%, 50%, 80% and 100%) of arterial blockage. In vivo and in vitro measurements of the lumen diameter and wall thickness are taken using Magnetic Resonance Imaging (MRI) and microscopic techniques, respectively. These data are used to validate a 3D computational fluid dynamics model (CFD) which is developed to generalize the outcomes of this work and to determine the arterial stress and strain under the blockage conditions. This work indicates that an arterial blockage in excess of 20% of the lumen diameter significantly influences the pulse wave and reduces the systolic blood pressure at the right femoral artery. High wall shear stress and low circumferential strain are also generated at the blockage site.

Keywords: arterial blockage, pulse wave, atherosclerosis, CFD

Procedia PDF Downloads 284
551 Metastatic Invasive Lobular Cancer Presenting as a Cervical Polyp

Authors: Sally Shepherd, Craig Murphy

Abstract:

Introduction: The uterus or cervix are unusual locations as metastatic sites for cancers. It is further unusual for it to be a site of metastasis, whilst the primary malignancy remains occult. Case Report: A 63-year-old female with three months of altered bowel habits underwent a CT scan of the abdomen and pelvis, revealing a bulky uterus and left ovary, nonspecific colonic thickening, and diffuse peritoneal changes. She underwent colposcopy, which revealed a large endocervical polyp that was excised, revealing strongly hormone-positive metastatic invasive lobular breast cancer. She subsequently underwent a PET scan, which showed moderately diffuse activity in the cervix and left adnexa. Breast examination was unremarkable, and screening mammography, ultrasound, and MRI of the breast did not identify any lesions. Her blood tests revealed a Ca 15-3 of 934, CA-125 of 220, and CEA of 27. She was commenced on letrozole and ribociclib with an improvement in her symptoms. Conclusion: It is rare for occult breast cancer to be established and diagnosed by pelvic imaging and biopsy. Suspicion of uterine or cervical metastasis should be heightened in patients with an active or past history of breast cancer.

Keywords: occult breast cancer, cervical metastasis, invasive lobular carcinoma, metastasis

Procedia PDF Downloads 125
550 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function

Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana

Abstract:

Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.

Keywords: HSV space, histology, enhancement, image

Procedia PDF Downloads 329
549 Optic Nerve Sheath Measurement in Children with Head Trauma

Authors: Sabiha Sahin, Kursad Bora Carman, Coskun Yarar

Abstract:

Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury.

Keywords: head trauma, intracranial pressure, optic nerve, sonography

Procedia PDF Downloads 159
548 A Fortunate Presentation of Intestinal Obstruction Secondary to a Sarcomatoid Tumour of the Small Bowel

Authors: Thampi Rawther, Sean O’Brien, Kamala Kanta Das

Abstract:

Background: Intussusception in the adult is rarely from a benign cause and is almost always pathological. Causes include carcinomas, polyps, Meckel's diverticulum, or colonic diverticulum. Common symptoms include abdominal pain, intestinal obstruction, palpable abdominal mass, GI bleeding, and anemia. Sarcomatoid carcinoma is a rare type of small intestinal malignancy exhibiting carcinomatous and sarcomatous features. It primarily affects older patients, mean age 57, and is 1.5 times more prevalent in men. Method: This is an interesting case report of a patient presenting with intussusception secondary to a sarcomatoid tumor of the small bowel. Conclusion: Surgery is the treatment of choice in adults with intussusception due to the high malignancy potential. Furthermore, surgical resection of the affected bowel is the definitive form of therapy as small bowel sarcomatoid tumors are not responsive to chemotherapy and radiotherapy. Early surgical intervention helps reduce mortality as it allows for early staging, treatment, and monitoring of the tumor. The patient was fortunate to have presented with intussusception, facilitating early surgical intervention, and was found to have a low disease stage.

Keywords: general surgery, small bowel tumour, imaging, unique

Procedia PDF Downloads 80
547 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 71
546 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 136
545 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review

Authors: Agastya Pratap Singh

Abstract:

Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.

Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation

Procedia PDF Downloads 26
544 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
543 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 247
542 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 135
541 Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns

Authors: Raahil Sheikh, Abhishek Maurya, Priya Gujjar, Himanshu Dwivedi, Prathamesh Minde

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided.

Keywords: UAV, drone, autonomous system, thermal imaging

Procedia PDF Downloads 75
540 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method

Authors: Lavinia Ruta, Ileana Farcasanu

Abstract:

The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.

Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae

Procedia PDF Downloads 62
539 A Novel Paradigm in the Management of Pancreatic Trauma

Authors: E. Tan, O. McKay, T. Clarnette T., D. Croagh

Abstract:

Background: Historically with pancreatic trauma, complete disruption of the main pancreatic duct (MPD), classified as Grade IV-V by the American Association for the Surgery of Trauma (AAST), necessitated a damage-control laparotomy. This was to avoid mortality, shorten diet upgrade timeframe, and hence shorter length of stay. However, acute pancreatic resection entailed complications of pancreatic fistulas and leaks. With the advance of imaging-guided interventions, non-operative management such as percutaneous and transpapillary drainage of traumatic peripancreatic collections have been trialled favourably. The aim of this case series is to evaluate the efficacy of endoscopic ultrasound-guided (EUS) transmural drainage in managing traumatic peripancreatic collections as a less invasive alternative to traditional approaches. This study also highlights the importance of anatomical knowledge regarding peripancreatic collection’s common location in the lesser sac, the pancreas relationship to adjacent organs, and the formation of the main pancreatic duct in regards to the feasibility of therapeutic internal drainage. Methodology: A retrospective case series was conducted at a single tertiary endoscopy unit, analysing patient data over a 5-year period. Inclusion criteria outlined patients age 5 to 80-years-old, traumatic pancreatic injury of at least Grade IV and haemodynamic stability. Exclusion criteria involved previous episodes of pancreatitis or abdominal trauma. Patient demographics and clinicopathological characteristics were retrospectively collected. Results: The study identified 7 patients with traumatic pancreatic injuries that were managed from 2018-2022; age ranging from 5 to 34 years old, with majority being female (n=5). Majority of the mechanisms of trauma were a handlebar injury (n=4). Diagnosis was confirmed with an elevated lipase and computerized tomotography (CT) confirmation of proximal pancreatic transection with MPD disruption. All patients sustained an isolated single organ grade IV pancreatic injury, except case 4 and 5 with other intra-abdominal visceral Grade 1 injuries. 6 patients underwent early ERCP-guided transpapillary drainage with 1 being unsuccessful for pancreatic duct stent insertion (case 1) and 1 complication of stent migration (case 2). Surveillance imaging post ERCP showed the stents were unable to bridge the disrupted duct and development of symptomatic collections with an average size of 9.9cm. Hence, all patients proceeded to EUS-guided transmural drainage, with 2/7 patients requiring repeat drainages (case 6 and 7). Majority (n=6) had a cystogastrostomy, whilst 1 (case 6) had a cystoenterostomy due to feasibility of the peripancreatic collection being adjacent to duodenum rather than stomach. However, case 6 subsequently required repeat EUS-guided drainage with cystogastrostomy for ongoing collections. Hence all patients avoided initial laparotomy with an average index length of stay of 11.7 days. Successful transmural drainage was demonstrated, with no long-term complications of pancreatic insufficiency; except for 1 patient requiring a distal pancreatectomy at 2 year follow-up due to chronic pain. Conclusion: The early results of this series support EUS-guided transmural drainage as a viable management option for traumatic peripancreatic collections, showcasing successful outcomes, minimal complications, and long-term efficacy in avoiding surgical interventions. More studies are required before the adoption of this procedure as a less invasive and complication-prone management approach for traumatic peripancreatic collections.

Keywords: endoscopic ultrasound, cystogastrostomy, pancreatic trauma, traumatic peripancreatic collection, transmural drainage

Procedia PDF Downloads 48
538 Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles

Authors: Raahil Sheikh, Prathamesh Minde, Priya Gujjar, Himanshu Dwivedi, Abhishek Maurya

Abstract:

UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided

Keywords: UAV, autonomous systems, drones, geo thermal imaging

Procedia PDF Downloads 86
537 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts

Authors: Virgil-Florin Duma, Dorin Demian

Abstract:

Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.

Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts

Procedia PDF Downloads 192
536 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation

Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo

Abstract:

The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).

Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment

Procedia PDF Downloads 323
535 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 287
534 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 415
533 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics

Procedia PDF Downloads 224
532 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 155
531 Optimization of the Self-Recognition Direct Digital Radiology Technology by Applying the Density Detector Sensors

Authors: M. Dabirinezhad, M. Bayat Pour, A. Dabirinejad

Abstract:

In 2020, the technology was introduced to solve some of the deficiencies of direct digital radiology. SDDR is an invention that is capable of capturing dental images without human intervention, and it was invented by the authors of this paper. Adjusting the radiology wave dose is a part of the dentists, radiologists, and dental nurses’ tasks during the radiology photography process. In this paper, an improvement will be added to enable SDDR to set the suitable radiology wave dose according to the density and age of the patients automatically. The separate sensors will be included in the sensors’ package to use the ultrasonic wave to detect the density of the teeth and change the wave dose. It facilitates the process of dental photography in terms of time and enhances the accuracy of choosing the correct wave dose for each patient separately. Since the radiology waves are well known to trigger off other diseases such as cancer, choosing the most suitable wave dose can be helpful to decrease the side effect of that for human health. In other words, it decreases the exposure time for the patients. On the other hand, due to saving time, less energy will be consumed, and saving energy can be beneficial to decrease the environmental impact as well.

Keywords: dental direct digital imaging, environmental impacts, SDDR technology, wave dose

Procedia PDF Downloads 194
530 Superficial Temporal Artery Pseudoaneurysm Post Blepharoplasty: Case Report

Authors: Asaad Alhabsi, Alyaqdan Algafri

Abstract:

Aim: Reporting 83 years old man with history of left upper eyelid swelling post 4-lids blepharoplasty diagnosed based on clinical presentation and Radiological imaging with pseudoaneurysm of frontal branch of Superficial Temporal Artery post blepharoplasty. METHODS: 83 years old who presented to a Tertiary ophthalmic center with painless left upper eyelids swelling for 2 months post 4-lids blepharoplasty. Left subcutaneous, sub-brow lesion, in the supertemporal pre-septal area, large mass found and excised surgically. Then he developed recurrent larger mass twice first time treated with aspiration of blood, second time diagnosed with superficial temporal artery (STA) pseudoaneurysm of frontal branch treated with endovascular embolization. RESULTS: Pseudoaneurysm of superficial temporal artery (STA) is a rare, presenting usual post head or face trauma .literature reported few cases of such conditions post operatively, and no reported cases post blepharoplasty. CONCLUSIONS: Surgical intervention is the gold standard of treatment either directly by dissecting the aneurysmal sac and ligate both ends, or endovascular method of injecting thrombin or embolization which was done in this patient by interventional radiologist.

Keywords: superficial temporal artery, pseudoaneurysm, blepharoplasty, Oculoplasty

Procedia PDF Downloads 77
529 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield

Authors: Mohammad Mardi

Abstract:

Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.

Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity

Procedia PDF Downloads 170
528 Understanding ASPECTS of Stroke: Interrater Reliability between Emergency Medicine Physician and Radiologist in a Rural Setup

Authors: Vineel Inampudi, Arjun Prakash, Joseph Vinod

Abstract:

Aims and Objectives: To evaluate the interrater reliability in grading ASPECTS score, between emergency medicine physician at first contact and radiologist among patients with acute ischemic stroke. Materials and Methods: We conducted a retrospective analysis of 86 acute ischemic stroke cases referred to the Department of Radiodiagnosis during November 2014 to January 2016. The imaging (plain CT scan) was performed using GE Bright Speed Elite 16 Slice CT Scanner. ASPECTS score was calculated separately by an emergency medicine physician and radiologist. Interrater reliability for total and dichotomized ASPECTS (≥ 6 and < 6) scores were assessed using statistical analysis (ICC and Cohen ĸ coefficients) on SPSS software (v17.0). Results: Interrater agreement for total and dichotomized ASPECTS was substantial (ICC 0.79 and Cohen ĸ 0.68) between the emergency physician and radiologist. Mean difference in ASPECTS between the two readers was only 0.15 with standard deviation of 1.58. No proportionality bias was detected. Bland Altman plot was constructed to demonstrate the distribution of ASPECT differences between the two readers. Conclusion: Substantial interrater agreement was noted in grading ASPECTS between emergency medicine physician at first contact and radiologist thereby confirming its robustness even in a rural setting.

Keywords: ASPECTS, computed tomography, MCA territory, stroke

Procedia PDF Downloads 237