Search results for: genetic components
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5512

Search results for: genetic components

4732 Genetic Diversity in Capsicum Germplasm Based on Inter Simple Sequence Repeat Markers

Authors: Siwapech Silapaprayoon, Januluk Khanobdee, Sompid Samipak

Abstract:

Chili peppers are the fruits of Capsicum pepper plants well known for their fiery burning sensation on the tongue after consumption. They are members of the Solanaceae or common nightshade family along with potato, tomato and eggplant. Thai cuisine has gained popularity for its distinct flavors due to usages of various spices and its heat from the addition of chili pepper. Though being used in little quantity for each dish, chili pepper holds a special place in Thai cuisine. There are many varieties of chili peppers in Thailand, and thirty accessions were collected at Rajamangala University of Technology Lanna, Lampang, Thailand. To effectively manage any germplasm it is essential to know the diversity and relationships among members. Thirty-six Inter Simple Sequence Repeat (ISSRs) DNA markers were used to analyze the germplasm. Total of 335 polymorphic bands was obtained giving the average of 9.3 alleles per marker. Unweighted pair-group mean arithmetic method (UPGMA) clustering of data using NTSYS-pc software indicated that the accessions showed varied levels of genetic similarity ranging from 0.57-1.00 similarity coefficient index indicating significant levels of variation. At SM coefficient of 0.81, the germplasm was separated into four groups. Phenotypic variation was discussed in context of phylogenetic tree clustering.

Keywords: diversity, germplasm, Chili pepper, ISSR

Procedia PDF Downloads 152
4731 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico

Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez

Abstract:

The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.

Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem

Procedia PDF Downloads 367
4730 A Review Investigating the Potential Of Zooxanthellae to Be Genetically Engineered to Combat Coral Bleaching

Authors: Anuschka Curran, Sandra Barnard

Abstract:

Coral reefs are of the most diverse and productive ecosystems on the planet, but due to the impact of climate change, these infrastructures are dying off primarily through coral bleaching. Coral bleaching can be described as the process by which zooxanthellae (algal endosymbionts) are expelled from the gastrodermal cavity of the respective coral host, causing increased coral whitening. The general consensus is that mass coral bleaching is due to the dysfunction of photosynthetic processes in the zooxanthellae as a result of the combined action of elevated temperature and light-stress. The question then is, do zooxanthellae have the potential to play a key role in the future of coral reef restoration through genetic engineering? The aim of this study is firstly to review the different zooxanthellae taxa and their traits with respect to environmental stress, and secondly, to review the information available on the protective mechanisms present in zooxanthellae cells when experiencing temperature fluctuations, specifically concentrating on heat shock proteins and the antioxidant stress response of zooxanthellae. The eight clades (A-H) previously recognized were redefined into seven genera. Different zooxanthellae taxa exhibit different traits, such as their photosynthetic stress responses to light and temperature. Zooxanthellae have the ability to determine the amount and type of heat shock proteins (hsps) present during a heat response. The zooxanthellae can regulate both the host’s respective hsps as well as their own. Hsps, generally found in genotype C3 zooxanthellae, such as Hsp70 and Hsp90, contribute to the thermal stress response of the respective coral host. Antioxidant activity found both within exposed coral tissue, and the zooxanthellae cells can prevent coral hosts from expelling their endosymbionts. The up-regulation of gene expression, which may mitigate thermal stress induction of any of the physiological aspects discussed, can ensure stable coral-zooxanthellae symbiosis in the future. It presents a viable alternative strategy to preserve reefs amidst climate change. In conclusion, despite their unusual molecular design, genetic engineering poses as a useful tool in understanding and manipulating variables and systems within zooxanthellae and therefore presents a solution that can ensure stable coral-zooxanthellae symbiosis in the future.

Keywords: antioxidant enzymes, genetic engineering, heat-shock proteins, Symbiodinium

Procedia PDF Downloads 189
4729 Integrated Teaching of Hardware Courses for the Undergraduates of Computer Science and Engineering to Attain Focused Outcomes

Authors: Namrata D. Hiremath, Mahalaxmi Bhille, P. G. Sunitha Hiremath

Abstract:

Computer systems play an integral role in all facets of the engineering profession. This calls for an understanding of the processor-level components of computer systems, their design and operation, and their impact on the overall performance of the systems. Systems users are always in need of faster, more powerful, yet cheaper computer systems. The focus of Computer Science engineering graduates is inclined towards software oriented base. To be an efficient programmer there is a need to understand the role of hardware architecture towards the same. It is essential for the students of Computer Science and Engineering to know the basic building blocks of any computing device and how the digital principles can be used to build them. Hence two courses Digital Electronics of 3 credits, which is associated with lab of 1.5 credits and Computer Organization of 5 credits, were introduced at the sophomore level. Activity was introduced with the objective to teach the hardware concepts to the students of Computer science engineering through structured lab. The students were asked to design and implement a component of a computing device using MultiSim simulation tool and build the same using hardware components. The experience of the activity helped the students to understand the real time applications of the SSI and MSI components. The impact of the activity was evaluated and the performance was measured. The paper explains the achievement of the ABET outcomes a, c and k.

Keywords: digital, computer organization, ABET, structured enquiry, course activity

Procedia PDF Downloads 501
4728 Model Updating Based on Modal Parameters Using Hybrid Pattern Search Technique

Authors: N. Guo, C. Xu, Z. C. Yang

Abstract:

In order to ensure the high reliability of an aircraft, the accurate structural dynamics analysis has become an indispensable part in the design of an aircraft structure. Therefore, the structural finite element model which can be used to accurately calculate the structural dynamics and their transfer relations is the prerequisite in structural dynamic design. A dynamic finite element model updating method is presented to correct the uncertain parameters of the finite element model of a structure using measured modal parameters. The coordinate modal assurance criterion is used to evaluate the correlation level at each coordinate over the experimental and the analytical mode shapes. Then, the weighted summation of the natural frequency residual and the coordinate modal assurance criterion residual is used as the objective function. Moreover, the hybrid pattern search (HPS) optimization technique, which synthesizes the advantages of pattern search (PS) optimization technique and genetic algorithm (GA), is introduced to solve the dynamic FE model updating problem. A numerical simulation and a model updating experiment for GARTEUR aircraft model are performed to validate the feasibility and effectiveness of the present dynamic model updating method, respectively. The updated results show that the proposed method can be successfully used to modify the incorrect parameters with good robustness.

Keywords: model updating, modal parameter, coordinate modal assurance criterion, hybrid genetic/pattern search

Procedia PDF Downloads 161
4727 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia

Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke

Abstract:

To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.

Keywords: accession, germination, lentil, NaCl, screening, seedling stage

Procedia PDF Downloads 341
4726 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: artificial bee colony algorithm, economic dispatch, unit commitment, wind power

Procedia PDF Downloads 375
4725 The Diversity of DRB1 Locus of Exon 2 of MHC Molecule of Sudanese Indigenous Desert Sheep

Authors: Muna A. Eissawi, Safaa Abed Elfataah, Haytham Hago, Fatima E Abukunna, Ibtisam Amin Goreish, Nahid Gornas

Abstract:

The study examined and analyzed the genetic diversity of DRB1locus of exon 2 of major histocompatibility complex of Sudanese desert sheep using PCR-RFLP and DNA sequencing. Five hundred samples belonging to five ecotypes of Desert Sudanese sheep (Abrag (Ab), Ashgar (Ash), Hamari (H), Kabashi (K) and Watish (W) were included. Amplification of exon 2 of the DRB1 gene yielded (300bp) amplified product in different ecotypes. Nine different digestion patterns corresponding to Five distinct alleles were observed with Rsa1 digestion. Genotype (ag) was the most common among all ecotypes, with a percentage comprised (40.4 %). The Hardy-Weinberg equilibrium (HWE) test showed that the studied ecotypes have significantly deviated from the theoretical proportions of Rsa1 patterns; probability values of the Chi-square test for HWE for MHC-DRB1 gene in SDS were 0.00 in all ecotypes. The constructed phylogenetic tree revealed the relation of 22 Sudanese isolates with each other and showed the shared sequences with 47 published foreign sequences randomly selected from different geographic regions. The results of this study highlight the effect of heterozygosity of MHC genes of the Desert sheep of Sudan which may clarify some of genetic back ground of their disease resistance and adaptation to environment.

Keywords: desert sheep, MHC, Ovar-DRB1, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)

Procedia PDF Downloads 77
4724 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 435
4723 The Effectiveness of Mindfulness Education on Emotional, Psychological, and Social Well-Being in 12th Grade Students in Tehran City

Authors: Fariba Dortaj, H. Bashir Nejad, Akram Dortaj,

Abstract:

Investigate the Effectiveness of Mindfulness Education on Emotional, Psychological, and Social Well-being in 12th grade students in Tehran city is the aim of present study. The research method is semi-experimental with pretest-posttest design with control group. The statistical population of the study includes all 12th grade students of the 12th district of Tehran city in the academic year of 2017 to 2018. From the mentioned population, 60 students had earned low scores in three dimensions of Subjective Well-Being Questionnaire of Keyes and Magyar-Moe (2003) by using random sampling method and they were selected and randomly assigned into 2 experimental and control groups. Then experimental groups were received a Mindfulness protocol in 8 sessions during 2 hours. After completion of the sessions, all subjects were re-evaluated. Data were analyzed by using multivariate analysis of covariance. The findings of this study showed that in the emotional well-being aspect with the components of positive emotional affection (P < 0.025, F = 17/80) and negative emotions (P <0.025, F = 5/41), in the psychological well-being of the components Self-esteem (P < 0.008, F = 25.26), life goal (P < 0.008, F = 38.19), environmental domination (P <0.008, F=82.82), relationships with others (P < 0.008, F = 19.12), personal development with (P < 0.008, F = 87.38), and in the social well-being aspect, the correlation coefficients with (P<0.01, F=12/21), admission and acceptability with (P <0.01, F =18.09) and realism with (P <0.01, F = 11.30), there was a significant difference between the experimental and control groups and it can be said that the education of mindfulness affects the improvement of components of psychological, social and emotional well-being in students.

Keywords: mindfulness, emotional well-being, psychological well-being, social well-being

Procedia PDF Downloads 177
4722 Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran

Authors: Sara Jelodarian

Abstract:

Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20th century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data.

Keywords: develop, production markets, progress, strategic role, technology

Procedia PDF Downloads 117
4721 To Study the Effect of Drying Temperature Towards Extraction of Aquilaria subintegra Dry Leaves Using Vacuum Far Infrared

Authors: Tengku Muhammad Rafi Nazmi Bin Tengku Razali, Habsah Alwi

Abstract:

This article based on effect of temperature towards extraction of Aquilaria Subintegra. Aquilaria Subintegra which its main habitat is in Asia-tropical and particularly often found in its native which is Thailand. There is claim which is Aquilaria Subintegra contains antipyretic properties that helps fight fever. Research nowadays also shown that paracetamol consumed bring bad effect towards consumers. This sample will first dry using Vacuum Far Infrared which provides better drying than conventional oven. Soxhlet extractor used to extract oil from sample. Gas Chromatography Mass Spectrometer used to analyze sample to determine its compound. Objective from this research was to determine the active ingredients that exist in the Aquilaria Subintegra leaves and to determine whether compound of Acetaminophen exist or not inside the leaves. Moisture content from 400C was 80%, 500C was 620% and 600C was 36%. The greater temperature resulting lower moisture content inside sample leaves. 7 components were identified in sample T=400C while only 5 components were identified in sample at T=50C and T=60C. Four components were commonly identified in three sample which is 1n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, methyl ester (z,z,z), Vitamin E and Squalene. Further studies are needed with new series of temperature to refine the best results.

Keywords: aquilaria subintegra, vacuum far infrared, SOXHLET extractor, gas chromatography mass spectrometer, paracetamol

Procedia PDF Downloads 484
4720 Development and Verification of the Idom Shielding Optimization Tool

Authors: Omar Bouhassoun, Cristian Garrido, César Hueso

Abstract:

The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.

Keywords: optimization, shielding, nuclear, genetic algorithm

Procedia PDF Downloads 110
4719 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 125
4718 Probabilistic Building Life-Cycle Planning as a Strategy for Sustainability

Authors: Rui Calejo Rodrigues

Abstract:

Building Refurbishing and Maintenance is a major area of knowledge ultimately dispensed to user/occupant criteria. The optimization of the service life of a building needs a special background to be assessed as it is one of those concepts that needs proficiency to be implemented. ISO 15686-2 Buildings and constructed assets - Service life planning: Part 2, Service life prediction procedures, states a factorial method based on deterministic data for building components life span. Major consequences result on a deterministic approach because users/occupants are not sensible to understand the end of components life span and so simply act on deterministic periods and so costly and resources consuming solutions do not meet global targets of planet sustainability. The estimation of 2 thousand million conventional buildings in the world, if submitted to a probabilistic method for service life planning rather than a deterministic one provide an immense amount of resources savings. Since 1989 the research team nowadays stating for CEES–Center for Building in Service Studies developed a methodology based on Montecarlo method for probabilistic approach regarding life span of building components, cost and service life care time spans. The research question of this deals with the importance of probabilistic approach of buildings life planning compared with deterministic methods. It is presented the mathematic model developed for buildings probabilistic lifespan approach and experimental data is obtained to be compared with deterministic data. Assuming that buildings lifecycle depends a lot on component replacement this methodology allows to conclude on the global impact of fixed replacements methodologies such as those on result of deterministic models usage. Major conclusions based on conventional buildings estimate are presented and evaluated under a sustainable perspective.

Keywords: building components life cycle, building maintenance, building sustainability, Montecarlo Simulation

Procedia PDF Downloads 205
4717 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension

Authors: Aleksandr Nagay, Gulnoz Khamidullayeva

Abstract:

It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.

Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition

Procedia PDF Downloads 276
4716 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
4715 Optimization and Energy Management of Hybrid Standalone Energy System

Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif

Abstract:

Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.

Keywords: energy management, hybrid system, renewable energy, remote area, optimization

Procedia PDF Downloads 199
4714 Long Term Changes of Aerosols and Their Radiative Forcing over the Tropical Urban Station Pune, India

Authors: M. P. Raju, P. D. Safai, P. S. P. Rao, P. C. S. Devara, C. V. Naidu

Abstract:

In order to study the Physical and chemical characteristics of aerosols, samples of Total Suspended Particulates (TSP) were collected using a high volume sampler at Pune, a semi-urban location in SW India during March 2009 to February 2010. TSP samples were analyzed for water soluble components like F, Cl, NO3, SO4, NH4, Na, K, Ca, and Mg and acid soluble components like Al, Zn, Fe and Cu using Ion-Chromatograph and Atomic Absorption Spectrometer. Analysis of the data revealed that the monthly mean TSP concentrations varied between 471.3 µg/m3 and 30.5 µg/m3 with an annual mean value of 159.8 µg/m3. TSP concentrations were found to be less during post-monsoon and winter (October through February), compared to those in summer and monsoon (March through September). Anthropogenic activities like vehicular emissions and dust particles originated from urban activities were the major sources for TSP. TSP showed good correlation with all the major ionic components, especially with SO4 (R= 0.62) and NO3 (R= 0.67) indicating the impact of anthropogenic sources over the aerosols at Pune. However, the overall aerosol nature was alkaline (Ave pH = 6.17) mainly due to the neutralizing effects of Ca and NH4. SO4 contributed more (58.8%) to the total acidity as compared to NO3 (41.1%) where as, Ca contributed more (66.5%) to the total alkalinity than NH4 (33.5%). Seasonality of acid soluble component Al, Fe and Cu showed remarkable increase, indicating the dominance of soil source over the man-made activities. Overall study on TSP indicated that aerosols at Pune were mainly affected by the local sources.

Keywords: chemical composition, acidic and neutralization potential, radiative forcing, urban station

Procedia PDF Downloads 244
4713 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
4712 Assesment of Genetic Fidelity of Micro-Clones of an Aromatic Medicinal Plant Murraya koenigii (L.) Spreng

Authors: Ramesh Joshi, Nisha Khatik

Abstract:

Murraya koenigii (L.) Spreng locally known as “Curry patta” or “Meetha neem” belonging to the family Rutaceae that grows wildly in Southern Asia. Its aromatic leaves are commonly used as the raw material for traditional medicinal formulations in India. The leaves contain essential oil and also used as a condiment. Several monomeric and binary carbazol alkaloids present in the various plant parts. These alkaloids have been reported to possess anti-microbial, mosquitocidal, topo-isomerase inhibition and antioxidant properties. Some of the alkaloids reported in this plant have showed anti carcinogenic and anti-diabetic properties. The conventional method of propagation of this tree is limited to seeds only, which retain their viability for only a short period. Hence, a biotechnological approach might have an advantage edging over traditional breeding as well as the genetic improvement of M. koenigii within a short period. The development of a reproducible regeneration protocol is the prerequisite for ex situ conservation and micropropagation. An efficient protocol for high frequency regeneration of in vitro plants of Murraya koenigii via different explants such as- nodal segments, intermodal segments, leaf, root segments, hypocotyle, cotyledons and cotyledonary node explants is described. In the present investigation, assessment of clonal fidelity in the micropropagated plantlets of Murraya koenigii was attempted using RAPD and ISSR markers at different pathways of plant tissue culture technique. About 20 ISSR and 40 RAPD primers were used for all the samples. Genomic DNA was extracted by CTAB method. ISSR primer were found to be more suitable as compared to RAPD for the analysis of clonal fidelity of M. koenigii. The amplifications however, were finally performed using RAPD, ISSR markers owing to their better performance in terms of generation of amplification products. In RAPD primer maximum 75% polymorphism was recorded in OPU-2 series which exhibited out of 04 scorable bands, three bands were polymorphic with a band range of size 600-1500 bp. In ISSR primers the UBC 857 showed 50% polymorphism with 02 band were polymorphic of band range size between 400-1000 bp.

Keywords: genetic fidelity, Murraya koenigii, aromatic plants, ISSR primers

Procedia PDF Downloads 501
4711 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 168
4710 Angiotensin Converting Enzyme (ACE) and Angiotensinogen (AGT) Gene Variants in Pakistani Patients of Diabetes Mellitus and Diabetic Nephropathy

Authors: Rozeena Shaikh, Syed M Shahid, Jamil Ahmad, Qaisar Mansoor, Muhammad Ismail, Abid Azhar

Abstract:

Introduction: Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. In most high-income countries as well as middle-income and low- income countries. DM is among the top causes of deaths. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy, and foot. Diabetic nephropathy (DN) characterized by persistent albuminuria is a leading cause of end stage renal failure (ESRF). Pathogenesis of diabetic nephropathy is implicated by the polymorphisms in genes encoding the components of reninangiotensin- aldosteron system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and particularly angiotensin converting enzyme (ACE) gene. Method: Study subjects include 110 control, 110 patients with DM without hypertension, 110 patients with DM with hypertension and 110 patients with DN. Blood samples were collected for Biochemical analysis and PCR and sequencing for the specific region of both genes. Results: The frequency of DD genotype and D allele of ACE (I/D) was significantly (p<0.05) high in DM normotensive, DM hypertensive and DN patients when compared to control. The ACE G2350A genotypes and allele frequencies were significantly different (p<0.05) in DM hypertensive patients as compared to control and DN, while no difference was observed between DM normotensive and DN when compared to control. The genotypes and alleles of AGT (M268T) polymorphism were significantly different (p<0.05) in DM normotensive, DM hypertensive and DN when compared to control. Conclusion: The DD genotype and D allele of ACE (I/D), GG genotype and G allele of ACE (G2350A) and the TT genotype and T allele of AGT (M268T) polymorphism have shown a significant difference in genotype and allele frequencies between controls and patients.

Keywords: genetic variations, ACE, AGT, diabetes mellitus, diabetic nephropathy, Pakistan

Procedia PDF Downloads 392
4709 A Review on the Challenge and Need of Goat Semen Production and Artificial Insemination in Nepal

Authors: Pankaj K. Jha, Ajeet K. Jha, Pravin Mishra

Abstract:

Goat raising is a popular livestock sub-commodity of mixed farming system in Nepal. Besides food and nutritional security, it has an important role in the economy of many peoples. Goat breeding through AI is commonly practiced worldwide. It is a very basic tool to speed up genetic improvement and increase productivity. For the goat genetic improvement program, the government of Nepal has imported some specialized exotic goat breeds and semen. Some progress has been made in the initiation of selective breeding within the local breeds and practice of AI with imported semen. Importance of AI in goats has drawn more attention among goat farmers. However, importing semen is not a permanent solution at national level; rather, it is more important to develop and establish its own frozen semen production technique. Semen quality and its relationship with fertility are said to be a major concern in animal production, hence accurate measurement of semen fertilizing potential is of great importance. The survivability of sperm cells depends on semen quality. Survivability of sperm cells is assessed through visual and microscopic evaluation of spermatozoal progressive motility and morphology. In Nepal, there is lack of scientific information on seminal attributes of buck semen, its dilution, cooling and freezing technique under management conditions of Nepal. Therefore, the objective of this review was to provide brief information about breeding system, semen production and artificial insemination in Nepalese goat.

Keywords: artificial insemination, goat, Nepal, semen

Procedia PDF Downloads 212
4708 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 476
4707 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 343
4706 Genetic Screening of Sahiwal Bulls for Higher Fertility

Authors: Atul C. Mahajan, A. K. Chakravarty, V. Jamuna, C. S. Patil, Neeraj Kashyap, Bharti Deshmukh, Vijay Kumar

Abstract:

The selection of Sahiwal bulls on the basis of dams best lactation milk yield under breeding programme in herd of the country neglecting fertility traits leads to deterioration in their performances and economy. The goal of this study was to explore polymorphism of CRISP2 gene and their association with semen traits (Post Thaw Motility, Hypo-osmotic Swelling Test, Acrosome Integrity, DNA Fragmentation and capacitation status), scrotal circumference, expected predicted difference (EPD) for milk yield and fertility. Sahiwal bulls included in present study were 60 bulls used in breeding programme as well as 50 young bulls yet to be included in breeding programme. All the Sahiwal bulls were found to be polymorphic for CRISP2 gene (AA, AG and GG) present within exon 7 to the position 589 of CRISP2 mRNA by using PCR-SSCP and Sequencing. Semen analysis were done on 60 breeding bulls frozen semen doses pertaining to four season (winter, summer, rainy and autumn). The scrotal circumference was measured from existing Sahiwal breeding bulls in the herd (n=47). The effect of non-genetic factors on reproduction traits were studied by least-squares technique and the significant difference of means between subclasses of season, period, parity and age group were tested. The data were adjusted for the significant non-genetic factors to remove the differential environmental effects. The adjusted data were used to generate traits like Waiting Period (WP), Pregnancy Rate (PR), Expected Predicted Difference (EPD) of fertility, respectively. Genetic and phenotypic parameters of reproduction traits were estimated. The overall least-squares means of Age at First Calving (AFC), Service Period (SP) and WP were estimated as 36.69 ± 0.18 months, 120.47 ± 8.98 days and 79.78 ± 3.09 days respectively. Season and period of birth had significant effect (p < 0.01) on AFC. AFC was highest during autumn season of birth followed by summer, winter and rainy. Season and period of calving had significant effect (p < 0.01) on SP and WP of sahiwal cows. The WP for Sahiwal cows was standardized based on four developed predicted model for pregnancy rate 42, 63, 84 and 105 days using all lactation records. The WP for Sahiwal cows were standardized as 42 days. A selection criterion was developed for Sahiwal breeding bulls and young Sahiwal bulls on the basis of EPD of fertility. The genotype has significant effect on expected predicted difference of fertility and some semen parameters like post thaw motility and HOST. AA Genotype of CRISP2 gene revealed better EPD for fertility than EPD of milk yield. AA genotype of CRISP2 gene has higher scrotal circumference than other genotype. For young Sahiwal bulls only AA genotypes were present with similar patterns. So on the basis of association of genotype with seminal traits, EPD of milk yield and EPD for fertility status, AA and AG genotype of CRISP2 gene was better for higher fertility in Sahiwal bulls.

Keywords: expected predicted difference, fertility, sahiwal, waiting period

Procedia PDF Downloads 584
4705 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
4704 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing

Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila

Abstract:

Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.

Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing

Procedia PDF Downloads 176
4703 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues

Authors: Amirhossein Chambari

Abstract:

This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.

Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I

Procedia PDF Downloads 583