Search results for: distributed parameter systems
12051 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow
Authors: Shivani Saini
Abstract:
The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.Keywords: Darcy model, nanofluid, porous layer, throughflow
Procedia PDF Downloads 13712050 Optimal Construction Using Multi-Criteria Decision-Making Methods
Authors: Masood Karamoozian, Zhang Hong
Abstract:
The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.Keywords: multi-criteria decision making, AHP, SAW, TOPSIS
Procedia PDF Downloads 11012049 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 16212048 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters
Authors: Badreddine Chemali, Boualem Tiliouine
Abstract:
This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response
Procedia PDF Downloads 28112047 A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity and Parameter Uncertainties: A Linear Matrix Inequality Approach
Authors: Sofiane Bououden, Ilyes Boulkaibet
Abstract:
In this paper, a robust model predictive controller (RMPC) for uncertain nonlinear system under actuator saturation is designed to control a DC-DC buck converter in PV pumping application, where this system is subject to actuator saturation and parameter uncertainties. The considered nonlinear system contains a linear constant part perturbed by an additive state-dependent nonlinear term. Based on the saturating actuator property, an appropriate linear feedback control law is constructed and used to minimize an infinite horizon cost function within the framework of linear matrix inequalities. The proposed approach has successfully provided a solution to the optimization problem that can stabilize the nonlinear plants. Furthermore, sufficient conditions for the existence of the proposed controller guarantee the robust stability of the system in the presence of polytypic uncertainties. In addition, the simulation results have demonstrated the efficiency of the proposed control scheme.Keywords: PV pumping system, DC-DC buck converter, robust model predictive controller, nonlinear system, actuator saturation, linear matrix inequality
Procedia PDF Downloads 18112046 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York
Authors: Haowei Lu, Anaya Aaron
Abstract:
Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty
Procedia PDF Downloads 3512045 Numerical Simulation of Unsteady Natural Convective Nanofluid Flow within a Trapezoidal Enclosure Using Meshfree Method
Authors: S. Nandal, R. Bhargava
Abstract:
The paper contains a numerical study of the unsteady magneto-hydrodynamic natural convection flow of nanofluids within a symmetrical wavy walled trapezoidal enclosure. The length and height of enclosure are both considered equal to L. Two-phase nanofluid model is employed. The governing equations of nanofluid flow along with boundary conditions are non-dimensionalized and are solved using one of Meshfree technique (EFGM method). Meshfree numerical technique does not require a predefined mesh for discretization purpose. The bottom wavy wall of the enclosure is defined using a cosine function. Element free Galerkin method (EFGM) does not require the domain. The effects of various parameters namely time t, amplitude of bottom wavy wall a, Brownian motion parameter Nb and thermophoresis parameter Nt is examined on rate of heat and mass transfer to get a visualization of cooling and heating effects. Such problems have important applications in heat exchangers or solar collectors, as wavy walled enclosures enhance heat transfer in comparison to flat walled enclosures.Keywords: heat transfer, meshfree methods, nanofluid, trapezoidal enclosure
Procedia PDF Downloads 15812044 Comparative Analysis of Photovoltaic Systems
Authors: Irtaza M. Syed, Kaameran Raahemifar
Abstract:
This paper presents comparative analysis of photovoltaic systems (PVS) and proposes practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000 VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000 V DC String Inverters based PVS is the best choice.Keywords: photovoltaic module, photovoltaic systems, operational efficiency improvement, comparative analysis
Procedia PDF Downloads 48512043 Utilizing Grid Computing to Enhance Power Systems Performance
Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima
Abstract:
Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting
Procedia PDF Downloads 47612042 Applying the CA Systems in Education Process
Authors: A. Javorova, M. Matusova, K. Velisek
Abstract:
The article summarizes the experience of laboratory technical subjects teaching methodologies using a number of software products. The main aim is to modernize the teaching process in accordance with the requirements of today - based on information technology. Increasing of the study attractiveness and effectiveness is due to the introduction of CA technologies in the learning process. This paper discussed the areas where individual CA system used. Environment using CA systems are briefly presented in each chapter.Keywords: education, CA systems, simulation, technology
Procedia PDF Downloads 39712041 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 30212040 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 30912039 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka
Procedia PDF Downloads 39412038 An Integrated 5G, Geomagnetic, and Inertial Measurement Unit Fusion Approach for Indoor Positioning
Authors: Chen Zhang, Wei He, Yue Jin, Zengshan Tian, Kaikai Liu
Abstract:
With the widespread adoption of the Internet of Things and smart devices, the demand for indoor positioning technology with high accuracy and robustness continues to grow. Traditional positioning methods such as fingerprinting, channel parameter estimation techniques (TDoA, AoA), and Pedestrian Dead Reckoning (PDR) each have their limitations. Fingerprinting is highly sensitive to environmental changes, channel parameter estimation is only effective in line-of-sight conditions, and PDR is prone to sensor errors and magnetic interference. To overcome these limitations, multisensor fusion-based positioning methods have become a mainstream solution. This paper proposes a dynamic positioning system that integrates 5G TDoA, geomagnetic fingerprinting, and PDR. The system uses 5G TDoA for high-precision starting point positioning, corrects PDR heading with geomagnetic declination, and refines PDR positioning accuracy using geomagnetic fingerprints. Experimental results demonstrate that this method improves positioning accuracy and stability in complex indoor environments, overcoming the limitations of traditional methods and providing a reliable indoor positioning solution.Keywords: 5G TDoA, magnetic fields, pedestrian dead reckoning, fusion location
Procedia PDF Downloads 312037 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 27812036 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts
Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter
Abstract:
Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings
Procedia PDF Downloads 12312035 Component Interface Formalization in Robotic Systems
Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers
Abstract:
Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.Keywords: CPS, robots, software architecture, interface, ROS, autopilot
Procedia PDF Downloads 9212034 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 20312033 Liquid Sulphur Storage Tank
Authors: Roya Moradifar, Naser Agharezaee
Abstract:
In this paper corrosion in the liquid sulphur storage tank at South pars gas complex phases 2&3 is presented. This full hot insulated field-erected storage tanks are used for the temporary storage of 1800m3 of molten sulphur. Sever corrosion inside the tank roof was observed during over haul inspections, in the direction of roof gradient. Investigation shown, in spite of other parts of tank there was no insulation around these manholes. Internal steam coils do not maintain a sufficiently high tank roof temperature in the vapor space. Sulphur and formation of liquid water at cool metal surface, this combination leads to the formation of iron sulfide. By employing a distributed external heating system, the temperatures of any point of the tank roof should be based on ambient dew point and the liquid storage solidification point. Also other construction and operation of tank is more important. This paper will review potential corrosion mechanism and operational case study which illustrate the importance of heating systems.Keywords: tank, steam, corrosion, sulphur
Procedia PDF Downloads 57012032 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 34512031 Modeling Heat-Related Mortality Based on Greenhouse Emissions in OECD Countries
Authors: Anderson Ngowa Chembe, John Olukuru
Abstract:
Greenhouse emissions by human activities are known to irreversibly increase global temperatures through the greenhouse effect. This study seeks to propose a mortality model with sensitivity to heat-change effects as one of the underlying parameters in the model. As such, the study sought to establish the relationship between greenhouse emissions and mortality indices in five OECD countries (USA, UK, Japan, Canada & Germany). Upon the establishment of the relationship using correlation analysis, an additional parameter that accounts for the sensitivity of heat-changes to mortality rates was incorporated in the Lee-Carter model. Based on the proposed model, new parameter estimates were calculated using iterative algorithms for optimization. Finally, the goodness of fit for the original Lee-Carter model and the proposed model were compared using deviance comparison. The proposed model provides a better fit to mortality rates especially in USA, UK and Germany where the mortality indices have a strong positive correlation with the level of greenhouse emissions. The results of this study are of particular importance to actuaries, demographers and climate-risk experts who seek to use better mortality-modeling techniques in the wake of heat effects caused by increased greenhouse emissions.Keywords: climate risk, greenhouse emissions, Lee-Carter model, OECD
Procedia PDF Downloads 34512030 Identification of Nonlinear Systems Using Radial Basis Function Neural Network
Authors: C. Pislaru, A. Shebani
Abstract:
This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the K-Means clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.Keywords: system identification, nonlinear systems, neural networks, radial basis function, K-means clustering algorithm
Procedia PDF Downloads 47112029 Improving Students’ Participation in Group Tasks: Case Study of Adama Science and Technology University
Authors: Fiseha M. Guangul, Annissa Muhammed, Aja O. Chikere
Abstract:
Group task is one method to create the conducive environment for the active teaching-learning process. Performing group task with active involvement of students will benefit the students in many ways. However, in most cases all students do not participate actively in the group task, and hence the intended benefits are not acquired. This paper presents the improvements of students’ participation in the group task and learning from the group task by introducing different techniques to enhance students’ participation. For the purpose of this research Carpentry and Joinery II (WT-392) course from Wood Technology Department at Adama Science and Technology University was selected, and five groups were formed. Ten group tasks were prepared and the first five group tasks were distributed to the five groups in the first day without introducing the techniques that are used to enhance participation of students in the group task. On another day, the other five group tasks were distributed to the same groups and various techniques were introduced to enhance students’ participation in the group task. The improvements of students’ learning from the group task after the implementation of the techniques. After implementing the techniques the evaluation showed that significant improvements were obtained in the students’ participation and learning from the group task.Keywords: group task, students participation, active learning, the evaluation method
Procedia PDF Downloads 21512028 Assessing the Adoption of Health Information Systems in a Resource-Constrained Country: A Case of Uganda
Authors: Lubowa Samuel
Abstract:
Health information systems, often known as HIS, are critical components of the healthcare system to improve health policies and promote global health development. In a broader sense, HIS as a system integrates data collecting, processing, reporting, and making use of various types of data to improve healthcare efficacy and efficiency through better management at all levels of healthcare delivery. The aim of this study is to assess the adoption of health information systems (HIS) in a resource-constrained country drawing from the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results indicate that the user's perception of the technology and the poor information technology infrastructures contribute a lot to the low adoption of HIS in resource-constrained countries.Keywords: health information systems, resource-constrained countries, health information systems
Procedia PDF Downloads 12212027 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 43912026 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems
Authors: Nasser Almonawer
Abstract:
Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method
Procedia PDF Downloads 4912025 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 29312024 Research on Sensitivity of Geological Disasters in Road Area Based on Analytic Hierarchy Process
Authors: Li Yongyi
Abstract:
In order to explore the distribution of geological disasters within the expressway area of Shaanxi Province, the Analytic Hierarchy Process theory is applied based on the geographic information system technology platform, and the ground elevation, rainfall, vegetation coverage and other indicators are selected for analysis, and the expressway area is sensitive Sexual evaluation. The results show that the highway area disasters in Shaanxi Province are mainly distributed in the southern mountainous areas and are dominated by landslides; the disaster area ratio basically increases with the increase in ground elevation, surface slope, surface undulation, rainfall, and vegetation coverage. The increase in the distance from the river shows a decreasing trend; after grading the disaster sensitivity within 5km of the expressway, the extremely sensitive area, the highly sensitive area, the medium sensitive area, the low sensitive area, and the extremely low sensitive area respectively account for 8.17%、15.80%、22.99%、26.22%、26.82%. Highly sensitive road areas are mainly distributed in southern Shaanxi.Keywords: highway engineering, sensitivity, analytic hierarchy process, geological hazard, road area
Procedia PDF Downloads 10312023 Introduction of Robust Multivariate Process Capability Indices
Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian
Abstract:
Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control
Procedia PDF Downloads 28412022 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology
Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh
Abstract:
In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.
Procedia PDF Downloads 60