Search results for: canopy characters classification
1994 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 5461993 Representations of Wolves (Canis lupus) in Feature Films: The Detailed Analysis of the Text and Picture in the Chosen Movies
Authors: Barbara Klimek
Abstract:
Wolves are one of the most misrepresented species in literature and the media. They’re often portrayed as vicious, man-eating beasts whose main life goal is to hunt and kill people. Many movie directors use wolves as their main characters in different types of films, especially horror, thriller and science fiction movies to create gore and fear. This, in turn, results in people being afraid of wolves and wanting to destroy them. Such cultural creations caused wolves being stalked, abused and killed by people and in many areas they were completely destroyed. This paper analyzes the representations of wolves in the chosen films in the four main portrayed aspects: 1. the overall picture – true versus false, positive versus negative, based on stereotypes or realistic, displaying wolf behavior typical of the species or fake 2. subjectivity – how humans treat and talk about the animals – as subjects or as objects 3. animal welfare – how humans treat wolves and nature, are the human – animal relations positive and appropriate or negative and abusive 4. empathy – are human characters shown to co-feel the suffering with the wolves, do they display signs of empathy towards the animals, do the animals empathize with humans? The detailed analysis of the text and pictures presented in the chosen films concludes that wolves are especially misrepresented in the movies. Their behavior is shown as fake and negative, based on stereotypes and myths, the human – animal relations are shown mainly as negative where people fear the animals and hunt them and wolves stalk, follow, attack and kill humans. It shows that people do not understand the needs of these animals and are unable to show empathy towards them. The article will discuss the above-mentioned study results in detail and will present many examples. Animal representations in cultural creations, including film have a great impact on how people treat particular species of animals. The media shape people’s attitudes, what in turn results in people either respecting and protecting the animals or fearing, disliking and destroying the particular species.Keywords: film, movies, representations, wolves
Procedia PDF Downloads 2161992 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology
Authors: Yunwei Zhang, Na Li, Yuhong Niu
Abstract:
Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection
Procedia PDF Downloads 1341991 Relationship between Chlorophyl Content and Calculated Index Values of Citrus Trees
Authors: Namik Kemal Sonmez
Abstract:
Based passive remote sensing technologies have been widely used in many plant species. However, use of these techniques in orange trees is limited. In this study, the relationships between chlorophyll content (Chl) and calculated red edge (RE) and vegetation index values of the citrus leave at different growth stages were formed the basis for the analysis. Canopy reflectance by hand-held spectroradiometer and total Chl analysis at the lab were measured simultaneously, from the random samples taken from four different parts of an orange orchard. Plant materials consisted of four different age groups of 15, 20, 25, and 30 years old orange trees. Reflectance measurements were conducted between 450 and 900 nanometer (nm) wavelength at four different bands (3 visible bands and 1 near-infrared band) at the four basic physiological periods (flowering, fruit setting, fruit maturity, and dormancy) of orange trees. According to the statistical analysis conducted, there was a strong relationship between the chlorophyll content and calculated indexes (p ≤ 0.01; R²= 0.925 at red edge and R²= 0.986 at vegetation index) at the fruit setting stage of 20 years old trees. Again at this stage, fruit setting, total Chl content values among all orange trees were significantly correlated at the RE and VI with the R² values of 0.672 and 0.635 at the 0.001 level, respectively. This indicated that the relationships between Chl content and index values were very strong at this stage, in comparison to the other stages.Keywords: spectroradiometer, citrus, chlorophyll, reflectance, index
Procedia PDF Downloads 3741990 Psychoanalytical Foreshadowing: The Application of a Literary Device in Quranic Narratology
Authors: Fateme Montazeri
Abstract:
Literary approaches towards the text of the Quran predate the modern period. Suyuti (d.1505)’s encyclopedia of Quranic sciences, Al-Itqan, provides a notable example. In the modern era, the study of the Quranic rhetorics received particular attention in the second half of the twentieth century by Egyptian scholars. Amin Al-Khouli (d. 1966), who might be considered the first to argue for the necessity of applying a literary-rhetorical lens toward the tafseer, Islamic exegesis, and his students championed the literary analysis as the most effective approach to the comprehension of the holy text. Western scholars continued the literary criticism of the Islamic scripture by applying to the Quran similar methodologies used in biblical studies. In the history of the literary examination of the Quran, the scope of the critical methods applied to the Quranic text has been limited. For, the rhetorical approaches to the Quran, in the premodern as well as the modern period, concerned almost exclusively with the lexical layer of the text, leaving the narratological dimensions insufficiently examined. Recent contributions, by Leyla Ozgur Alhassen, for instance, attempt to fill this lacunae. This paper aims at advancing the studies of the Quranic narratives by investigating the application of a literary device whose role in the Quranic stories remains unstudied, that is, “foreshadowing.” This paper shall focus on Chapter 12, “Surah al-Yusuf,” as its case study. Chapter 12, the single chapter that includes the story of Joseph in one piece, contains several instances in which the events of the story are foreshadowed. As shall be discussed, foreshadowing occurs either through a monolog or dialogue whereby one or more of the characters allude to the future happenings or through the manner in which the setting is described. Through a close reading of the text, it will be demonstrated that the usage of the rhetorical tool of foreshadowing meets a dual purpose: on the one hand, foreshadowing prepares the reader/audience for the upcoming events in the plot, and on the other hand, it highlights the psychological dimensions of the characters, their thoughts, intentions, and disposition. In analyzing the story, this study shall draw on psychoanalytical criticism to explore the layers of meanings embedded in the Quranic narrative that are unfolded through foreshadowing.Keywords: foreshadowing, quranic narrative, literary criticism, surah yusuf
Procedia PDF Downloads 1551989 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1441988 Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities
Authors: Panpan Fan, Bo Ming, Niels P. R. Anten, Jochem B. Evers, Yaoyao Li, Shaokun Li, Ruizhi Xie
Abstract:
The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N.Keywords: dry matter, leaf N content, leaf rank, N availability, reallocation efficiency
Procedia PDF Downloads 1291987 A Tool for Assessing Performance and Structural Quality of Business Process
Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri
Abstract:
Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.Keywords: performance, structural quality, perspectives, tool, classification framework, measures
Procedia PDF Downloads 1571986 Accessible Mobile Augmented Reality App for Art Social Learning Based on Technology Acceptance Model
Authors: Covadonga Rodrigo, Felipe Alvarez Arrieta, Ana Garcia Serrano
Abstract:
Mobile augmented reality technologies have become very popular in the last years in the educational field. Researchers have studied how these technologies improve the engagement of the student and better understanding of the process of learning. But few studies have been made regarding the accessibility of these new technologies applied to digital humanities. The goal of our research is to develop an accessible mobile application with embedded augmented reality main characters of the art work and gamification events accompanied by multi-sensorial activities. The mobile app conducts a learning itinerary around the artistic work, driving the user experience in and out the museum. The learning design follows the inquiry-based methodology and social learning conducted through interaction with social networks. As for the software application, it’s being user-centered designed, following the universal design for learning (UDL) principles to assure the best level of accessibility for all. The mobile augmented reality application starts recognizing a marker from a masterpiece of a museum using the camera of the mobile device. The augmented reality information (history, author, 3D images, audio, quizzes) is shown through virtual main characters that come out from the art work. To comply with the UDL principles, we use a version of the technology acceptance model (TAM) to study the easiness of use and perception of usefulness, extended by the authors with specific indicators for measuring accessibility issues. Following a rapid prototype method for development, the first app has been recently produced, fulfilling the EN 301549 standard and W3C accessibility guidelines for mobile development. A TAM-based web questionnaire with 214 participants with different kinds of disabilities was previously conducted to gather information and feedback on user preferences from the artistic work on the Museo del Prado, the level of acceptance of technology innovations and the easiness of use of mobile elements. Preliminary results show that people with disabilities felt very comfortable while using mobile apps and internet connection. The augmented reality elements seem to offer an added value highly engaging and motivating for the students.Keywords: H.5.1 (multimedia information systems), artificial, augmented and virtual realities, evaluation/methodology
Procedia PDF Downloads 1371985 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 3611984 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4481983 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 901982 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 201981 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 1811980 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic
Authors: Mukesh Singh Boori, Vít Voženílek
Abstract:
Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socio-economic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.Keywords: remote sensing, land use/cover, change trajectories, image classification
Procedia PDF Downloads 4041979 Insight into Figo Sub-classification System of Uterine Fibroids and Its Clinical Importance as Well as MR Imaging Appearances of Atypical Fibroids
Authors: Madhuri S. Ghate, Rahul P. Chavhan, Shriya S. Nahar
Abstract:
Learning objective: •To describe Magnetic Resonance Imaging (MRI) imaging appearances of typical and atypical uterine fibroids with emphasis on differentiating it from other similar conditions. •To classify uterine fibroids according to International Federation of Gynecology and Obstetrics (FIGO) Sub-classifications system and emphasis on its clinical significance. •To show cases with atypical imaging appearances atypical fibroids Material and methods: MRI of Pelvis had been performed in symptomatic women of child bearing age group on 1.5T and 3T MRI using T1, T2, STIR, FAT SAT, DWI sequences. Contrast was administered when degeneration was suspected. Imaging appearances of Atypical fibroids and various degenerations in fibroids were studied. Fibroids were classified using FIGO Sub-classification system. Its impact on surgical decision making and clinical outcome were also studied qualitatively. Results: Intramural fibroids were most common (14 patients), subserosal 7 patients, submucosal 5 patients . 6 patients were having multiple fibroids. 7 were having atypical fibroids. (1 hyaline degeneration, 1 cystic degeneration, 1 fatty, 1 necrosis and hemorrhage, 1 red degeneration, 1 calcification, 1 unusual large bilobed growth). Fibroids were classified using FIGO system. In uterus conservative surgeries, the lesser was the degree of myometrial invasion of fibroid, better was the fertility outcome. Conclusion: Relationship of fibroid with mucosal and serosal layers is important in the management of symptomatic fibroid cases. Risk to fertility involved in uterus conservative surgeries in women of child bearing age group depends on the extent of myometrial invasion of fibroids. FIGO system provides better insight into the degree of myometrial invasion. Knowledge about the atypical appearances of fibroids is important to avoid diagnostic confusion and untoward treatment.Keywords: degeneration, FIGO sub-classification, MRI pelvis, uterine fibroids
Procedia PDF Downloads 931978 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: privacy enforcement, platform-as-a-service privacy awareness, cloud computing privacy
Procedia PDF Downloads 2271977 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 381976 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2281975 Solidarity and Authority in the Characters of Shakespeare’s Drama
Authors: Vinay Jain, Meena Jain
Abstract:
Thee is generally used in Shakespeare by a master to a servant. Being the appropriate address to a servant, it is used in confidential and good-humoured utterances. You was received by a master. Hindi tu, tum, and aap express roughly the same social meanings as English thou/thee and you used to express respectively. The pronouns thou, thee and you have been reduced to you whereas in Hindi we still have all three pronouns – aap, tum and tu. It reveals that our society has not yet reached the unidimensional solidarity semantics toward which the present European pronominal usage seems to be moving. Shakespeare’s use of pronouns and Hindi pronouns are correlated with the interlocutor’s social status and intimacy.Keywords: brown and gilman, elizabethan pronouns, honorific pronoun, power, solidarity
Procedia PDF Downloads 771974 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5141973 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse
Procedia PDF Downloads 4431972 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 571971 Laying Performance of Itik Pinas (Anas platyrynchos Linnaeus) as Affected by Garlic (Allium sativum) Powder in Drinking Water
Authors: Gianne Bianca P. Manalo, Ernesto A. Martin, Vanessa V. Velasco
Abstract:
The laying performance, egg quality, egg classification, and income over feed cost of Improved Philippine Mallard duck (Itik Pinas) were examined as influenced by garlic powder in drinking water. A total of 48 ducks (42 females and 6 males) were used in the study. The ducks were allocated into two treatments - with garlic powder (GP) and without garlic powder (control) in drinking water. Each treatment had three replicates with eight ducks (7 females and 1 male) per replication. The results showed that there was a significant (P = 0.03) difference in average egg weight where higher values were attained by ducks with GP (77.67 g ± 0.64) than the control (75.64 g ± 0.43). The supplementation of garlic powder in drinking water, however, did not affect the egg production, feed intake, FCR, egg mass, livability, egg quality and egg classification. The Itik Pinas with GP in drinking water had numerically higher income over feed cost than those without. GP in drinking water can be considered in raising Itik Pinas. Further studies on increasing level of GP and long feeding duration also merit consideration to substantiate the findings.Keywords: phytogenic, garlic powder, Itik-Pinas, egg weight, egg production
Procedia PDF Downloads 861970 Braille Code Matrix
Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane
Abstract:
According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.Keywords: Braille code, comsol software, microactuators, piezoelectric
Procedia PDF Downloads 3561969 An Alternative Concept of Green Screen Keying
Authors: Jin Zhi
Abstract:
This study focuses on a green screen keying method developed especially for film visual effects. There are a series of ways of using existing tools for creating mattes from green or blue screen plates. However, it is still a time-consuming process, and the results vary especially when it comes to retaining tiny details, such as hair and fur. This paper introduces an alternative concept and method for retaining edge details of characters on a green screen plate, also, a number of connected mathematical equations are explored. At the end of this study, a simplified process of applying this method in real productions is also introduced.Keywords: green screen, visual effects, compositing, matte
Procedia PDF Downloads 4041968 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest
Authors: Damian Czubak
Abstract:
The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.Keywords: classification, combustible material, flammable vegetation, Norway spruce
Procedia PDF Downloads 931967 Detection of Autistic Children's Voice Based on Artificial Neural Network
Authors: Royan Dawud Aldian, Endah Purwanti, Soegianto Soelistiono
Abstract:
In this research we have been developed an automatic investigation to classify normal children voice or autistic by using modern computation technology that is computation based on artificial neural network. The superiority of this computation technology is its capability on processing and saving data. In this research, digital voice features are gotten from the coefficient of linear-predictive coding with auto-correlation method and have been transformed in frequency domain using fast fourier transform, which used as input of artificial neural network in back-propagation method so that will make the difference between normal children and autistic automatically. The result of back-propagation method shows that successful classification capability for normal children voice experiment data is 100% whereas, for autistic children voice experiment data is 100%. The success rate using back-propagation classification system for the entire test data is 100%.Keywords: autism, artificial neural network, backpropagation, linier predictive coding, fast fourier transform
Procedia PDF Downloads 4611966 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1421965 Classification of Factors Influencing Buyer-Supplier Relationship: A Case Study from the Cement Industry
Authors: Alberto Piatto, Zaza Nadja Lee Hansen, Peter Jacobsen
Abstract:
This paper examines the quantitative and qualitative factors influencing the buyer-supplier relationship. Understanding and acting on the right factors influencing supplier relationship management is crucial when a company outsource an important part of its business as it can be for engineering to order (ETO) company executing only the designing part in-house. Acting on these factors increase the quality of the relationship obtaining for both parties what they want and expect from an improved relationship. Best practices in supplier relationship management are considered and a case study of a large global company, called Cement A/S, operating in the cement business is carried out. One study is conducted including a large international company and hundreds of its suppliers. Data from the company is collected using semi-structured interviews and data from the suppliers is collected using a survey. Based on these inputs and an extensive literature review a classification of factors influencing the relationship buyer-supplier is presented and discussed. The results show that different managers among the company are assessing supplier from various perspectives, a standard approach to measure the performance of suppliers does not exist. The factors used nowadays in the company to measure performances of the suppliers are mostly related to time and cost. Quality is a key factor, but it has not been addressed properly since no data are available in the system. From a practical perspective, managers can learn from this paper which factors to consider when applying best practices of Supplier Relationship Management. Furthermore, from a theoretical perspective, this paper contributes with new knowledge in the area as limited research in collaboration with the company has been conducted. For this reason, a company, its suppliers and few studies for this type of industry have been conducted. For further research, it is suggested to define the correlation of factors to the profitability of the company and calculate its impact. When conducting this analysis it is important to focus on the efficient and effective use of factors that can be measurable and accepted from the supplier.Keywords: buyer-supplier relationship, cement industry, classification of factors, ETO
Procedia PDF Downloads 284