Search results for: Quaternion offset linear canonical transform
4322 Generalized Correlation Coefficient in Genome-Wide Association Analysis of Cognitive Ability in Twins
Authors: Afsaneh Mohammadnejad, Marianne Nygaard, Jan Baumbach, Shuxia Li, Weilong Li, Jesper Lund, Jacob v. B. Hjelmborg, Lene Christensen, Qihua Tan
Abstract:
Cognitive impairment in the elderly is a key issue affecting the quality of life. Despite a strong genetic background in cognition, only a limited number of single nucleotide polymorphisms (SNPs) have been found. These explain a small proportion of the genetic component of cognitive function, thus leaving a large proportion unaccounted for. We hypothesize that one reason for this missing heritability is the misspecified modeling in data analysis concerning phenotype distribution as well as the relationship between SNP dosage and the phenotype of interest. In an attempt to overcome these issues, we introduced a model-free method based on the generalized correlation coefficient (GCC) in a genome-wide association study (GWAS) of cognitive function in twin samples and compared its performance with two popular linear regression models. The GCC-based GWAS identified two genome-wide significant (P-value < 5e-8) SNPs; rs2904650 near ZDHHC2 on chromosome 8 and rs111256489 near CD6 on chromosome 11. The kinship model also detected two genome-wide significant SNPs, rs112169253 on chromosome 4 and rs17417920 on chromosome 7, whereas no genome-wide significant SNPs were found by the linear mixed model (LME). Compared to the linear models, more meaningful biological pathways like GABA receptor activation, ion channel transport, neuroactive ligand-receptor interaction, and the renin-angiotensin system were found to be enriched by SNPs from GCC. The GCC model outperformed the linear regression models by identifying more genome-wide significant genetic variants and more meaningful biological pathways related to cognitive function. Moreover, GCC-based GWAS was robust in handling genetically related twin samples, which is an important feature in handling genetic confounding in association studies.Keywords: cognition, generalized correlation coefficient, GWAS, twins
Procedia PDF Downloads 1344321 Use of SUDOKU Design to Assess the Implications of the Block Size and Testing Order on Efficiency and Precision of Dulce De Leche Preference Estimation
Authors: Jéssica Ferreira Rodrigues, Júlio Silvio De Sousa Bueno Filho, Vanessa Rios De Souza, Ana Carla Marques Pinheiro
Abstract:
This study aimed to evaluate the implications of the block size and testing order on efficiency and precision of preference estimation for Dulce de leche samples. Efficiency was defined as the inverse of the average variance of pairwise comparisons among treatments. Precision was defined as the inverse of the variance of treatment means (or effects) estimates. The experiment was originally designed to test 16 treatments as a series of 8 Sudoku 16x16 designs being 4 randomized independently and 4 others in the reverse order, to yield balance in testing order. Linear mixed models were assigned to the whole experiment with 112 testers and all their grades, as well as their partially balanced subgroups, namely: a) experiment with the four initial EU; b) experiment with EU 5 to 8; c) experiment with EU 9 to 12; and b) experiment with EU 13 to 16. To record responses we used a nine-point hedonic scale, it was assumed a mixed linear model analysis with random tester and treatments effects and with fixed test order effect. Analysis of a cumulative random effects probit link model was very similar, with essentially no different conclusions and for simplicity, we present the results using Gaussian assumption. R-CRAN library lme4 and its function lmer (Fit Linear Mixed-Effects Models) was used for the mixed models and libraries Bayesthresh (default Gaussian threshold function) and ordinal with the function clmm (Cumulative Link Mixed Model) was used to check Bayesian analysis of threshold models and cumulative link probit models. It was noted that the number of samples tested in the same session can influence the acceptance level, underestimating the acceptance. However, proving a large number of samples can help to improve the samples discrimination.Keywords: acceptance, block size, mixed linear model, testing order, testing order
Procedia PDF Downloads 3254320 Negativization: A Focus Strategy in Basà Language
Authors: Imoh Philip
Abstract:
Basà language is classified as belonging to Kainji family, under the sub-phylum Western-Kainji known as Rubasa (Basa Benue) (Croizier & Blench, 1992:32). Basà is an under-described language spoken in the North-Central Nigeria. The language is characterized by subject-verb-object (henceforth SVO) as its canonical word order. Data for this work is sourced from the researcher’s native intuition of the language corroborated with a careful observation of native speakers. This paper investigates the syntactic derivational strategy of information-structure encoding in Basà language. It emphasizes on a negative operator, as a strategy for focusing a constituent or clause that follows it and negativizes a whole proposition. For items that are not nouns, they have to undergo an obligatory nominalization process, either by affixation, modification or conversion before they are moved to the pre verbal position for these operations. The study discovers and provides evidence of the fact showing that deferent constituents in the sentence such as the subject, direct, indirect object, genitive, verb phrase, prepositional phrase, clause and idiophone, etc. can be focused with the same negativizing operator. The process is characterized by focusing the pre verbal NP constituent alone, whereas the whole proposition is negated. The study can stimulate similar study or be replicated in other languages.Keywords: negation, focus, Basà, nominalization
Procedia PDF Downloads 5994319 Globalization as Instrument for Multi-National Corporation in Transforming Asian’s Perspective towards Clean Water Consumption
Authors: Atanta Gian
Abstract:
It is inevitable that globalization has succeeded in transforming the world today. The influence of globalization has emerged in almost every aspect of life nowadays, especially in shaping the perception of the people. It can be seen on how easy for people are affected by the information surrounding them. Due to globalization, the flow of information has become more rapid along with the development of technology. People tend to believe in information that they actually get by themselves, if there is information where most of the people believe it is true, then this information could be categorized as factual and relevant. Therefore if people gain information on what is best for them in terms of daily consumption, then this information could transform their perspective, and it becomes a consideration in selecting their needs for daily consumption. By looking at this trend, the author sees that globalization could be used by Multi-National Corporation (MNC) to enhance the promotion of their products. This is applied by shaping the perspectives of the world regarding what is the best for them. Multi-National Corporation which has better technology in terms of the development of their external promotion could utilize this opportunity to affect people’s perspectives into what they want. In this paper, the author would like to elaborate how globalization is applied by MNC to shape people’s perspective regarding what is the best for them. The author would utilize a case study to analyze on how MNC could transform the perspectives of Asian people regarding the necessary of having a better quality drinking water, which in this case, MNC has shaped the perspective of Asian people in choosing their product by promoting the bottled water as the best choice for them. In the end of this paper, author would come to a conclusion that MNCs are able to shape the world’s perspective regarding the needs of their products which is supported by the globalization that is happening now.Keywords: consumption, globalisation, influence, information technology, multi-national corporations
Procedia PDF Downloads 2134318 Investigation a New Approach "AGM" to Solve of Complicate Nonlinear Partial Differential Equations at All Engineering Field and Basic Science
Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Davood Domiri Danji
Abstract:
In this conference, our aims are accuracy, capabilities and power at solving of the complicated non-linear partial differential. Our purpose is to enhance the ability to solve the mentioned nonlinear differential equations at basic science and engineering field and similar issues with a simple and innovative approach. As we know most of engineering system behavior in practical are nonlinear process (especially basic science and engineering field, etc.) and analytical solving (no numeric) these problems are difficult, complex, and sometimes impossible like (Fluids and Gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure an innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical method (Runge-Kutta 4th). Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear partial differential equations, with help of that there is no difficulty for solving all nonlinear differential equations. Advantages and ability of this method (AGM) as follow: (a) Non-linear Differential equations (ODE, PDE) are directly solvable by this method. (b) In this method (AGM), most of the time, without any dimensionless procedure, we can solve equation(s) by any boundary or initial condition number. (c) AGM method always is convergent in boundary or initial condition. (d) Parameters of exponential, Trigonometric and Logarithmic of the existent in the non-linear differential equation with AGM method no needs Taylor expand which are caused high solve precision. (e) AGM method is very flexible in the coding system, and can solve easily varieties of the non-linear differential equation at high acceptable accuracy. (f) One of the important advantages of this method is analytical solving with high accuracy such as partial differential equation in vibration in solids, waves in water and gas, with minimum initial and boundary condition capable to solve problem. (g) It is very important to present a general and simple approach for solving most problems of the differential equations with high non-linearity in engineering sciences especially at civil engineering, and compare output with numerical method (Runge-Kutta 4th) and Exact solutions.Keywords: new approach, AGM, sets of coupled nonlinear differential equation, exact solutions, numerical
Procedia PDF Downloads 4684317 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3984316 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models
Procedia PDF Downloads 4514315 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire
Authors: Julius Ilawe Osayi, Peter Osifo
Abstract:
Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY
Procedia PDF Downloads 1824314 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 4454313 Contrasted Mean and Median Models in Egyptian Stock Markets
Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid
Abstract:
Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming
Procedia PDF Downloads 3184312 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces
Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli
Abstract:
In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.Keywords: weak efficient, algebraic interior, vector closure, linear space
Procedia PDF Downloads 2304311 The Implementation of Secton Method for Finding the Root of Interpolation Function
Authors: Nur Rokhman
Abstract:
A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.Keywords: Secton method, interpolation, non linear function, numerical solution
Procedia PDF Downloads 3844310 The Impact of Community Settlement on Leisure Time Use and Body Composition in Determining Physical Lifestyles among Women
Authors: Mawarni Mohamed, Sharifah Shahira A. Hamid
Abstract:
Leisure time is an important component to offset the sedentary lifestyle of the people. Women tend to benefit from leisure activities not only to reduce stress but also to provide opportunities for well-being and self-satisfaction. This study was conducted to investigate body composition and leisure time use among women in Selangor from the influences of community settlement. A total of 419 women aged 18-65 years were selected to participate in this study. Descriptive statistics, t-test and ANOVA were used to analyze the level of physical activity and the relationship between leisure-time use and body composition were made to analyze the physical lifestyles. The results showed that women with normal body composition seem to be involved in more passive activities than women with less weight gain and obesity. Thus, the study recommended that the government and other health and recreational agencies should develop more places and activities suitable for leisure preference for women in their community settlement so they become more interested to engage in more active recreational and physical activities.Keywords: body composition, community settlement, leisure time, physical lifestyles
Procedia PDF Downloads 4554309 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD
Procedia PDF Downloads 2044308 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel
Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar
Abstract:
The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics
Procedia PDF Downloads 3244307 Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall
Authors: Hamid Nikzad, Shinta Yoshitomi
Abstract:
In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteriaKeywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures
Procedia PDF Downloads 1634306 Effect of Genotype and Sex on Morphometric Traits of Turkey
Authors: I. O. Dudusola, I. Ogunjimi
Abstract:
This study was carried out to determine the effect of sex and genotype on morphometric traits of turkey (Meleagris gallopavo) in a turkey population. Linear body measurements were taken on 150 turkeys. 70 exotic turkeys which include both males (20) and Females (50) and 80 locally adapted turkeys which include males (30) and females (50). The study was conducted at the Turkey Unit of the Teaching and Research Farm, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. The linear body measurements taken and recorded were the beak length, head length, neck length, body length, keel length, wingspan, wing length, drumstick, Shank length, toe length, tail length and body girth all taken in centimetres (cm). The recorded variables were analyzed with SAS (2008). Duncan multiple range test was used to detect differences among means. Variation was noted between male and female turkeys in favour of the male turkeys as an expression of sexual dimorphism for all studied traits. The male is found to be significantly higher (p <0.05) than the females for all the morphometric traits measured both for the local and exotic type. The exotic type is found to be significantly higher (p <0.05) than the local type for all the morphometric traits measured. The interaction is higher significantly (p <0.05) in the exotic genotype and in the male sex in relation with the morphometric trait especially in the beak length, neck length, body length, keel length, drumstick, shank length and the toe length.Keywords: exotic type, linear measurement, local type, morphometric traits, Meleagris gallopavo
Procedia PDF Downloads 3364305 Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina
Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez
Abstract:
Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS
Procedia PDF Downloads 3864304 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.
Procedia PDF Downloads 3214303 Trajectory Tracking Controller Based on Normalized Right Coprime Factorization Technique for the Ball and Plate System
Authors: Martins Olatunbosun Babatunde, Muhammed Bashir Muazu, Emmanuel Adewale Adedokun
Abstract:
This paper presents the development of a double-loop trajectory-tracking controller for the ball and plate system (BPS) using the Normalized Right Coprime Factorization (NRCF) scheme.The Linear Algebraic (LA) method is used to design the inner loop required to stabilize the ball, while H-infinity NRCF method, that involved the lead-lag compensator design approach, is used to develop the outer loop that controls the plate. Simulation results show that the plate was stabilized at 0.2989 seconds and the ball was able to settle after 0.9646 seconds, with a trajectory tracking error of 0.0036. This shows that the controller has good adaptability and robustness.Keywords: ball and plate system, normalized right coprime factorization, linear algebraic method, compensator, controller, tracking.
Procedia PDF Downloads 1464302 Moving Towards Zero Waste in a UK Local Authority Area: Challenges to the Introduction of Separate Food Waste Collections
Authors: C. Cole, M. Osmani, A. Wheatley, M. Quddus
Abstract:
EU and UK Government targets for minimising and recycling household waste has led the responsible authorities to research the alternatives to landfill. In the work reported here the local waste collection authority (Charnwood Borough Council) has adopted the aspirational strategy of becoming a “Zero Waste Borough” to lead the drive for public participation. The work concludes that the separate collection of food waste would be needed to meet the two regulatory standards on recycling and biologically active wastes. An analysis of a neighbouring Authority (Newcastle-Under-Lyne Borough Council (NBC), a similar sized local authority that has a successful weekly food waste collection service was undertaken. Results indicate that the main challenges for Charnwood Borough Council would be gaining householder co-operation, the extra costs of collection and organising alternative treatment. The analysis also demonstrated that there was potential offset value via anaerobic digestion for CBC to overcome these difficulties and improve its recycling performance.Keywords: England, food waste collections, household waste, local authority
Procedia PDF Downloads 4194301 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 934300 Modeling and Optimal Control of Hybrid Unmanned Aerial Vehicles with Wind Disturbance
Authors: Sunsoo Kim, Niladri Das, Raktim Bhattacharya
Abstract:
This paper addresses modeling and control of a six-degree-of-freedom unmanned aerial vehicle capable of vertical take-off and landing in the presence of wind disturbances. We design a hybrid vehicle that combines the benefits of both the fixed-wing and the rotary-wing UAVs. A non-linear model for the hybrid vehicle is rapidly built, combining rigid body dynamics, aerodynamics of wing, and dynamics of the motor and propeller. Further, we design a H₂ optimal controller to make the UAV robust to wind disturbances. We compare its results against that of proportional-integral-derivative and linear-quadratic regulator based control. Our proposed controller results in better performance in terms of root mean squared errors and time responses during two scenarios: hover and level- flight.Keywords: hybrid UAVs, VTOL, aircraft modeling, H2 optimal control, wind disturbances
Procedia PDF Downloads 1614299 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L. Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts as a motivating starting point. In this work, the authors extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zₚ, zₙ]. The zₚ component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zₙ component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach coined Augmented Posterior CDE (AP-CDE) only requires a simple modification of the common normalizing flow framework while significantly improving the interpretation of the latent component since zₚ represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of 𝑥-related variations due to factors such as lighting condition and subject id from the other random variations. Further, the experiments show that an unconditional NF neural network based on an unsupervised model of z, such as a Gaussian mixture, fails to generate interpretable results.Keywords: conditional density estimation, image generation, normalizing flow, supervised dimension reduction
Procedia PDF Downloads 1044298 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector
Authors: Dana M. Ragab, Jasim A Ghaeb
Abstract:
The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.Keywords: power quality, space vector, unbalance evaluation, three-phase power system
Procedia PDF Downloads 1914297 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks
Authors: Chad Brown
Abstract:
This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes
Procedia PDF Downloads 494296 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space
Authors: Amir Hadi Ziaie
Abstract:
In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics
Procedia PDF Downloads 3514295 Estimating Housing Prices Using Automatic Linear Modeling in the Metropolis of Mashhad, Iran
Authors: Mohammad Rahim Rahnama
Abstract:
Market-transaction price for housing is the main criteria for determining municipality taxes and is determined and announced on an annual basis. Of course, there is a discrepancy between the actual value of transactions in the Bureau of Finance (P for short) or municipality (P´ for short) and the real price on the market (P˝). The present research aims to determine the real price of housing in the metropolis of Mashhad and to pinpoint the price gap with those of the aforementioned apparatuses and identify the factors affecting it. In order to reach this practical objective, Automatic Linear Modeling, which calls for an explanatory research, was utilized. The population of the research consisted of all the residential units in Mashhad, from which 317 residential units were randomly selected. Through cluster sampling, out of the 170 income blocks defined by the municipality, three blocks form high-income (Kosar), middle-income (Elahieh), and low-income (Seyyedi) strata were surveyed using questionnaires during February and March of 2015 and the information regarding the price and specifications of residential units were gathered. In order to estimate the effect of various factors on the price, the relationship between independent variables (8 variables) and the dependent variable of the housing price was calculated using Automatic Linear Modeling in SPSS. The results revealed that the average for housing price index is 788$ per square meter, compared to the Bureau of Finance’s prices which is 10$ and that of municipality’s which is 378$. Correlation coefficient among dependent and independent variables was calculated to be R²=0.81. Out of the eight initial variables, three were omitted. The most influential factor affecting the housing prices is the quality of Quality of construction (Ordinary, Full, Luxury). The least important factor influencing the housing prices is the variable of number of sides. The price gap between low-income (Seyyedi) and middle-income (Elahieh) districts was not confirmed via One-Way ANOVA but their gap with the high-income district (Kosar) was confirmed. It is suggested that city be divided into two low-income and high-income sections, as opposed three, in terms of housing prices.Keywords: automatic linear modeling, housing prices, Mashhad, Iran
Procedia PDF Downloads 2624294 Harmonic Mitigation and Total Harmonic Distortion Reduction in Grid-Connected PV Systems: A Case Study Using Real-Time Data and Filtering Techniques
Authors: Atena Tazikeh Lemeski, Ismail Ozdamar
Abstract:
This study presents a detailed analysis of harmonic distortion in a grid-connected photovoltaic (PV) system using real-time data captured from a solar power plant. Harmonics introduced by inverters in PV systems can degrade power quality and lead to increased Total Harmonic Distortion (THD), which poses challenges such as transformer overheating, increased power losses, and potential grid instability. This research addresses these issues by applying Fast Fourier Transform (FFT) to identify significant harmonic components and employing notch filters to target specific frequencies, particularly the 3rd harmonic (150 Hz), which was identified as the largest contributor to THD. Initial analysis of the unfiltered voltage signal revealed a THD of 21.15%, with prominent harmonic peaks at 150 Hz, 250 Hz and 350 Hz, corresponding to the 3rd, 5th, and 7th harmonics, respectively. After implementing the notch filters, the THD was reduced to 5.72%, demonstrating the effectiveness of this approach in mitigating harmonic distortion without affecting the fundamental frequency. This paper provides practical insights into the application of real-time filtering techniques in PV systems and their role in improving overall grid stability and power quality. The results indicate that targeted harmonic mitigation is crucial for the sustainable integration of renewable energy sources into modern electrical grids.Keywords: grid-connected photovoltaic systems, fast Fourier transform, harmonic filtering, inverter-induced harmonics
Procedia PDF Downloads 464293 Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall
Authors: H. Nikzad, S. Yoshitomi
Abstract:
In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures.Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC moment frame, RC shear wall structures
Procedia PDF Downloads 260