Search results for: modified usability model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18558

Search results for: modified usability model

10518 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 87
10517 Finite Element Method for Modal Analysis of FGM

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of a FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FOTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 307
10516 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode

Authors: S. B. Mayil Vealan, C. Sekar

Abstract:

Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.

Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials

Procedia PDF Downloads 72
10515 Production, Extraction and Purification of Fungal Chitosan and Its Modification for Medical Applications

Authors: Debajyoti Bose

Abstract:

Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Chitosan is a positively charged natural biodegradable and biocompatible polymer. It is a linear polysaccharide consisting of β-1,4 linked monomers of glucosamine and N-acetylglucosamine. Chitosan can be mainly obtained from fungal sources during large fermentation process. In this study,three different fungal strains Aspergillus niger NCIM 1045, Aspergillus oryzae NCIM 645 and Mucor indicus MTCC 3318 were used for the production of chitosan. The growth mediums were optimized for maximum fungal production. The produced chitosan was characterized by determining degree of deacetylation. Chitosan possesses one reactive amino at the C-2 position of the glucosamine residue, and these amines confer important functional properties to chitosan which can be exploited for biofabrication to generate various chemically modified derivatives and explore their potential for pharmaceutical field. Chitosan nanoparticles were prepared by ionic cross-linking with tripolyphosphate (TPP). The major effect on encapsulation and release of protein (e.g. enzyme diastase) in chitosan-TPP nanoparticles was investigated in order to control the loading and release efficiency. It was noted that the chitosan loading and releasing efficiency as a nanocapsule, obtained from different fungal sources was almost near to initial enzyme activity(12026 U/ml) with a negligible loss. This signify, chitosan can be used as a polymeric drug as well as active component or protein carrier material in dosage by design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. Based upon these initial experiments, studies were also carried out on modification of chitosan based nanocapsules incorporated with physiologically important enzymes and nutraceuticals for target delivery.

Keywords: fungi, chitosan, enzyme, nanocapsule

Procedia PDF Downloads 482
10514 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: calculation of risk factor, fuzzy logic, fuzzy programming for ship, safety navigation of ships

Procedia PDF Downloads 173
10513 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques

Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.

Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings

Procedia PDF Downloads 21
10512 Modifications in Design of Lap Joint of Fiber Metal Laminates

Authors: Shaher Bano, Samia Fida, Asif Israr

Abstract:

The continuous development and exploitation of materials and designs have diverted the attention of the world towards the use of robust composite materials known as fiber-metal laminates in many high-performance applications. The hybrid structure of fiber metal laminates makes them a material of choice for various applications such as aircraft skin panels, fuselage floorings, door panels and other load bearing applications. The synergistic effect of properties of metals and fibers reinforced laminates are responsible for their high damage tolerance as the metal element provides better fatigue and impact properties, while high stiffness and better corrosion properties are inherited from the fiber reinforced matrix systems. They are mostly used as a layered structure in different joint configurations such as lap and but joints. The FML layers are usually bonded with each other using either mechanical fasteners or adhesive bonds. This research work is also focused on modification of an adhesive bonded joint as a single lap joint of carbon fibers based CARALL FML has been modified to increase interlaminar shear strength and avoid delamination. For this purpose different joint modification techniques such as the introduction of spews and shoulder to modify the bond shape and use of nanofillers such as carbon nano-tubes as a reinforcement in the adhesive materials, have been utilized to improve shear strength of lap joint of the adhesively bonded FML layers. Both the simulation and experimental results showed that lap joint with spews and shoulders configuration have better properties due to stress distribution over a large area at the corner of the joint. The introduction of carbon nanotubes has also shown a positive effect on shear stress and joint strength as they act as reinforcement in the adhesive bond material.

Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews

Procedia PDF Downloads 285
10511 Combined Effect of Gluten-Free Superfoods and by-Products from Ecuador to Evaluate the Functional and Sensory Properties of Breadmaking

Authors: Andrea Vasquez, Pedro Maldonado-Alvarado

Abstract:

In general, 'gluten-free' foods like breadmaking products provide functional or nutraceutical benefits for the consumer's health and increased their demand on the market. In Ecuador, there is an overproduction of superfoods, and the food by-products are undervalued. For the first time, to the author's best knowledge, gluten-free bread mixtures from quinoa and banana flour, cassava starch, lupine flour (LF), or whey protein (WP) with hydroxypropylmethylcellulose (HPMC) and transglutaminase (TG) were evaluated on their functional and sensory properties. Free amino groups and thiols, rheology, and electrophoresis SDS PAGE were performed to analyze the crosslinking of TG at different concentrations with HC or PL proteins. Dough characterization, pasting properties were evaluated, respectively, by a MIXOLAB and a rheometer with a pasting cell. The texture, porosity, and loaf volume were characterized using a texturometer, ImageJ software, and breadmaking ability, respectively. Finally, a breadmaking aptitude and sensorial bread acceptability were performed. A significant decrease in the content of free amino groups (0.16 to 0.11 and 0.46 to 0.36 mM/mg of protein) and free thiol groups (0.37 to 0.21 and 1.79 to 1.32 mM/mg protein) was observed when 1.0% and 0.5% TG were added to LF and WP, respectively. In apparent viscosity analysis, the action of TG on HC proteins changes their viscosity, while the viscosity of LF is not modified by TG. Results of electrophoresis in PL showed bands of higher molecular weight of different fragments of proteins with 1% TG. Formulation with 59.8, 39.9, 160.8, 6.0, 1.0, and 1.5% of, respectively, QF, BF, CS, LF or WP, TG, and HPMC had the best properties in dough parameters, pasting parameters (lower pasting temperature and higher peak viscosity), best crumb structure, lower crumb hardness and higher loaf volume (2.24 and 2.28 mL/g). All the loaves of bread were acceptable in baking aptitude and general acceptability.

Keywords: breadmaking, gluten-free, superfoods, by-products, Ecuador

Procedia PDF Downloads 116
10510 Investigation of Single Particle Breakage inside an Impact Mill

Authors: E. Ghasemi Ardi, K. J. Dong, A. B. Yu, R. Y. Yang

Abstract:

In current work, a numerical model based on the discrete element method (DEM) was developed which provided information about particle dynamic and impact event condition inside a laboratory scale impact mill (Fritsch). It showed that each particle mostly experiences three impacts inside the mill. While the first impact frequently happens at front surface of the rotor’s rib, the frequent location of the second impact is side surfaces of the rotor’s rib. It was also showed that while the first impact happens at small impact angle mostly varying around 35º, the second impact happens at around 70º which is close to normal impact condition. Also analyzing impact energy revealed that varying mill speed from 6000 to 14000 rpm, the ratio of first impact’s average impact energy and minimum required energy to break particle (Wₘᵢₙ) increased from 0.30 to 0.85. Moreover, it was seen that second impact poses intense impact energy on particle which can be considered as the main cause of particle splitting. Finally, obtained information from DEM simulation along with obtained data from conducted experiments was implemented in semi-empirical equations in order to find selection and breakage functions. Then, using a back-calculation approach, those parameters were used to predict the PSDs of ground particles under different impact energies. Results were compared with experiment results and showed reasonable accuracy and prediction ability.

Keywords: single particle breakage, particle dynamic, population balance model, particle size distribution, discrete element method

Procedia PDF Downloads 276
10509 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA

Authors: Mohammad Ali Farrokhpour

Abstract:

In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the model

Keywords: route planning, scooter sharing, public transportation, sharing system

Procedia PDF Downloads 70
10508 Combination of Work and Family Demands Correlated with the Severity of Wrist Musculoskeletal Disorders among Nurses

Authors: Hsien Hwa Kuo, Lin Wen Chun, Lin Wen Chun, Hsien Wen Kuo

Abstract:

Objective: Nurses represent an important occupational group frequently affected by wrist musculoskeletal disorders (WMSDs) due to a heavy workload, working shifts, poor posture, giving shots, making beds, lifting patients, bending their waist and insufficient rest time every day. However, lack of research reported nurses whether workload in household correlated with the severity of WMSDs. Methods: 550 nurses from a hospital in Taoyuan were interviewed using a modified standardized Nordic Musculoskeletal (NMQ) questionnaire including the demographic information, workplace condition and nine body parts of musculoskeletal disorders. Results: 17.9% and 23.9% of severity and symptoms in WMSDs among nurses with children were significant higher than among nurses without children (1​2.4% and 15.9%). Based on multiple logistic regression models adjusted for age, work duration, job title and body mass index (BMI), we found that heavy workload in hospital had higher odds ratio (OR) of the severity and symptoms of WMSD among nurses with children (OR= 8.67 and OR= 4.30, p<0.05) compared to nurses without children (OR= 1.94 and OR= 1.70). Conclusion: The severity and symptoms of WMSDs among nurses significantly correlated with workload in hospital among nurses with children. If women are at greater risk because of the combination of their work and family demands, synergistic effect of WMSDs was found among nurses. Comment: Women's domestic work, especially once they become mothers, they invest more time and energy caring for children, helping others, and doing housework. Thus domestic work, per se, may be a risk factor for wrist musculoskeletal problems, and, more importantly, it may constrain women's ability to protect themselves from the effects of their paid work. If nurses with more domestic work periodically make efforts to physical activity or modify inappropriate posture, their WMSDs symptoms will be alleviated.

Keywords: musculoskeletal disorders, nurse, NMQ, WMSDs

Procedia PDF Downloads 340
10507 Optimum Locations for Intercity Bus Terminals with the AHP Approach: Case Study of the City of Esfahan

Authors: Mehrdad Arabi, Ehsan Beheshtitabar, Bahador Ghadirifaraz, Behrooz Forjanizadeh

Abstract:

Interaction between human, location and activity defines space. In the framework of these relations, space is a container for current specifications in relations of the 3 mentioned elements. The change of land utility considered with average performance range, urban regulations, society requirements etc. will provide welfare and comfort for citizens. From an engineering view it is fundamental that choosing a proper location for a specific civil activity requires evaluation of locations from different perspectives. The debate of desirable establishment of municipal service elements in urban regions is one of the most important issues related to urban planning. In this paper, the research type is applicable based on goal, and is descriptive and analytical based on nature. Initially existing terminals in Esfahan are surveyed and then new locations are presented based on evaluated criteria. In order to evaluate terminals based on the considered factors, an AHP model is used at first to estimate weight of different factors and then existing and suggested locations are evaluated using Arc GIS software and AHP model results. The results show that existing bus terminals are located in fairly proper locations. Further results of this study suggest new locations to establish terminals based on urban criteria.

Keywords: Arc GIS, Esfahan city, optimum locations, terminals

Procedia PDF Downloads 276
10506 Radical Technological Innovation - Comparison of a Critical Success Factors Framework with Existing Literature

Authors: Florian Wohlfeil, Orestis Terzidis, Louisa Hellmann

Abstract:

Radical technological innovations enable companies to reach strong market positions and are thus desirable. On the other hand, the innovation process is related to significant costs and risks. Hence, the knowledge of the factors that influence success is crucial for technology driven companies. In a previous study, we have developed a conceptual framework of 25 Critical Success Factors for radical technological innovations and mapped them to four main categories: Technology, Organization, Market, and Process. We refer to it as the Technology-Organization-Market-Process (TOMP) framework. Taking the TOMP framework as a reference model, we conducted a structured and focused literature review of eleven standard books on the topic of radical technological innovation. With this approach, we aim to evaluate, expand, and clarify the set of Critical Success Factors detailed in the TOMP framework. Overall, the set of factors and their allocation to the main categories of the TOMP framework could be confirmed. However, the factor organizational home is not emphasized and discussed in most of the reviewed literature. On the other hand, an additional factor that has not been part of the TOMP framework is described to be important – strategy fit. Furthermore, the factors strategic alliances and platform strategy appear in the literature but in a different context compared to the reference model.

Keywords: Critical Success Factors, radical technological innovation, TOMP framework, innovation process

Procedia PDF Downloads 640
10505 Evaluation of Nutrition Supplement on Body Composition during Catch-Up Growth, in a Pre-Clinical Model of Growth Restriction

Authors: Bindya Jacob

Abstract:

The aim of the present study was to assess the quality of catchup growth induced by Oral Nutrition Supplement (ONS), in animal model of growth restriction due to under nutrition. Quality of catch-up growth was assessed by proportion of lean body mass (LBM) and fat mass (FM). Young SD rats were food restricted at 70% of normal caloric intake for 4 weeks; and re-fed at 120% of normal caloric intake for 4 weeks. Refeeding diet had 50% calories from animal diet and 50% from ONS formulated for optimal growth. After refeeding, the quantity and quality of catch-up growth were measured including weight, length, LBM and FM. During nutrient restriction, body weight and length of animals was reduced compared to healthy controls. Both LBM and FM were significantly lower than healthy controls (p < 0.001). Refeeding with ONS resulted in increase of weight and length, with significant catch-up growth compared to baseline (p < 0.001). Detailed examination of body composition showed that the catch-up in body weight was due to proportionate increase of LBM and FM, resulting in a final body composition similar to healthy controls. This data supports the use of well-designed ONS for recovery from growth restriction due to under nutrition, and return to normal growth trajectory characterized by normal ratio of lean and fat mass.

Keywords: catch up growth, body composition, nutrient restriction, healthy growth

Procedia PDF Downloads 419
10504 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 452
10503 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model

Authors: Medya Fathi

Abstract:

Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.

Keywords: project success, critical success factors, public-private partnership, transportation

Procedia PDF Downloads 80
10502 Modeling a Sustainable City in the Twenty-First Century: A Case Study of Ibadan Oyo State Nigeria

Authors: K. J. Jegede, O. O. Odekunle

Abstract:

The challenges facing government at all levels in the area of urban development are two folds, first is how to provide basic services for urban dwellers especially the urban poor and second, how to make cities and towns as model of good places for economic development. The key ingredients and catalysts for achieving these goals are strong and virile institutional capacity, urban infrastructure and a supportive urban policy framework. The government at all levels have been upgrading and expanding city infrastructure and services in Ibadan, the state capital to support sustainable economic development of the city, particularly in the areas of electricity, neighbourhood, solid waste management, transport, water supply, education, health facilities and markets developments to discourage street trading. This paper attempts to present Ibadan in the millennium as 'a model of a sustainable city'. A planned development strategy that had sustained the growth of the city from a war camp in the 19th century to a cosmopolitan city in the 21st century with the potential to become a megacity. The presentation examines, among others, the physical structure and population density of Ibadan city, the challenges of economic development, the development of urban infrastructure and services in Ibadan metropolitan area. The paper submitted by mapping out a strategy to achieve sustainable development of Ibadan city.

Keywords: megacity, physical structure, sustainable city, urban infrastructure

Procedia PDF Downloads 288
10501 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 245
10500 Degradation of Petroleum Hydrocarbons Using Pseudomonas Aeruginosa Isolated from Oil Contaminated Soil Incorporated into E. coli DH5α Host

Authors: C. S. Jeba Samuel

Abstract:

Soil, especially from oil field has posed a great hazard for terrestrial and marine ecosystems. The traditional treatment of oil contaminated soil cannot degrade the crude oil completely. So far, biodegradation proves to be an efficient method. During biodegradation, crude oil is used as the carbon source and addition of nitrogenous compounds increases the microbial growth, resulting in the effective breakdown of crude oil components to low molecular weight components. The present study was carried out to evaluate the biodegradation of crude oil by hydrocarbon-degrading microorganism Pseudomonas aeruginosa isolated from natural environment like oil contaminated soil. Pseudomonas aeruginosa, an oil degrading microorganism also called as hydrocarbon utilizing microorganism (or “HUM” bug) can utilize crude oil as sole carbon source. In this study, the biodegradation of crude oil was conducted with modified mineral basal salt medium and nitrogen sources so as to increase the degradation. The efficacy of the plasmid from the isolated strain was incorporated into E.coli DH5 α host to speed up the degradation of oil. The usage of molecular techniques has increased oil degradation which was confirmed by the degradation of aromatic and aliphatic rings of hydrocarbons and was inferred by the lesser number of peaks in Fourier Transform Infrared Spectroscopy (FTIR). The gas chromatogram again confirms better degradation by transformed cells by the lesser number of components obtained in the oil treated with transformed cells. This study demonstrated the technical feasibility of using direct inoculation of transformed cells onto the oil contaminated region thereby leading to the achievement of better oil degradation in a shorter time than the degradation caused by the wild strain.

Keywords: biodegradation, aromatic rings, plasmid, hydrocarbon, Fourier Transform Infrared Spectroscopy (FTIR)

Procedia PDF Downloads 351
10499 Determinates and Consequences of Job Involvement in Kuwaiti Business Organizations

Authors: Ali H. Muhammad

Abstract:

The present study examines some antecedents and consequences of employee job involvement in Kuwaiti business organization. The model presented in the current study suggests that job satisfaction and organizational commitments are determinates of job involvements. Employees who are satisfied with their jobs tend to be more attached to their jobs and view their jobs as an essential part of their existence. Similarly, employees who are committed to organizational goals, and identify with organizational values, tend to have high level of involvement. Furthermore, our model suggests that job involvement is positively related to work performance and organizational citizenship behavior. The negative consequences of job involvement include burnout and work family conflict. To test the hypotheses, a sample of 204 Kuwaiti employees representing 8 Kuwaiti work organizations is used. The sample covers a variety of business sectors in Kuwait, including manufacturing, services, and transportation. The data were analyzed using non-parametric tests, Pearson correlations, and structural equation modeling. Results indicate that job satisfaction and organizational commitment have significant positive effects on job involvement. Furthermore, findings reveal that job involvement is positively associated with performance, organization citizenship behavior, and work family conflict. Findings are discussed, and future areas of research are identified.

Keywords: job involvement, organizational citizenship behavior, work family conflict, burnout

Procedia PDF Downloads 138
10498 Analysis of the Premature In-Service Failure of Engine Mounting Towers of an Industrial Generator

Authors: Stephen J Futter, Michael I Okereke

Abstract:

This paper presents an investigation of the premature in-service failure of the engine mounting towers that form part of the bedframe commonly used for industrial power generation applications. The client during a routine in-service assessment of the generator set observed that the engine mounting towers had cracked. Thus, this study has investigated in detail the origin of the crack and proffered solutions to prevent a re-occurrence. Seven step problem solving methodology was followed during this paper. The study used both experimental and numerical approaches to understand, monitor and evaluate the cause and evolution of the premature failure. Findings from this study indicated that the failure resulted from a combination of varied processes from procurement of material parts, material selection, welding processes and inaptly designed load-bearing mechanics of the generating set and its mounting arrangement. These in-field observations and experimental simulations provided insights to design and validate a numerical finite element sub-model of the cracked bedframe considering thermal cycling: designed as part of these investigations. Resulting findings led to a recommendation of several procedural changes that should be adopted by the manufacturer, in order to prevent the re-occurrence of such pre-mature failure in future industrial applications.

Keywords: Engine, Premature Failure, Failure Analysis, Finite Element Model

Procedia PDF Downloads 272
10497 Catalytic Production of Hydrogen and Carbon Nanotubes over Metal/SiO2 Core-Shell Catalyst from Plastic Wastes Gasification

Authors: Wei-Jing Li, Ren-Xuan Yang, Kui-Hao Chuang, Ming-Yen Wey

Abstract:

Nowadays, plastic product and utilization are extensive and have greatly improved our life. Yet, plastic wastes are stable and non-biodegradable challenging issues to the environment. Waste-to-energy strategies emerge a promising way for waste management. This work investigated the co-production of hydrogen and carbon nanotubes from the syngas which was from the gasification of polypropylene. A nickel-silica core-shell catalyst was applied for syngas reaction from plastic waste gasification in a fixed-bed reactor. SiO2 were prepared through various synthesis solvents by Stöber process. Ni plays a role as modified SiO2 support, which were synthesized by deposition-precipitation method. Core-shell catalysts have strong interaction between active phase and support, in order to avoid catalyst sintering. Moreover, Fe or Co metal acts as promoter to enhance catalytic activity. The effects of calcined atmosphere, second metal addition, and reaction temperature on hydrogen production and carbon yield were examined. In this study, the catalytic activity and carbon yield results revealed that the Ni/SiO2 catalyst calcined under H2 atmosphere exhibited the best performance. Furthermore, Co promoted Ni/SiO2 catalyst produced 3 times more than Ni/SiO2 on carbon yield at long-term operation. The structure and morphological nature of the calcined and spent catalysts were examined using different characterization techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction. In addition, the quality and thermal stability of the nano-carbon materials were also evaluated by Raman spectroscopy and thermogravimetric analysis.

Keywords: plastic wastes, hydrogen, carbon nanotube, core-shell catalysts

Procedia PDF Downloads 303
10496 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit

Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek

Abstract:

In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.

Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage

Procedia PDF Downloads 255
10495 Assessing Circularity Potentials and Customer Education to Drive Ecologically and Economically Effective Materials Design for Circular Economy - A Case Study

Authors: Mateusz Wielopolski, Asia Guerreschi

Abstract:

Circular Economy, as the counterargument to the ‘make-take-dispose’ linear model, is an approach that includes a variety of schools of thought looking at environmental, economic, and social sustainability. This, in turn, leads to a variety of strategies and often confusion when it comes to choosing the right one to make a circular transition as effective as possible. Due to the close interplay of circular product design, business model and social responsibility, companies often struggle to develop strategies that comply with all three triple-bottom-line criteria. Hence, to transition to circularity effectively, product design approaches must become more inclusive. In a case study conducted with the University of Bayreuth and the ISPO, we correlated aspects of material choice in product design, labeling and technological innovation with customer preferences and education about specific material and technology features. The study revealed those attributes of the consumers’ environmental awareness that directly translate into an increase of purchase power - primarily connected with individual preferences regarding sports activity and technical knowledge. Based on this outcome, we constituted a product development approach that incorporates the consumers’ individual preferences towards sustainable product features as well as their awareness about materials and technology. It allows deploying targeted customer education campaigns to raise the willingness to pay for sustainability. Next, we implemented the customer preference and education analysis into a circularity assessment tool that takes into account inherent company assets as well as subjective parameters like customer awareness. The outcome is a detailed but not cumbersome scoring system, which provides guidance for material and technology choices for circular product design while considering business model and communication strategy to the attentive customers. By including customer knowledge and complying with corresponding labels, companies develop more effective circular design strategies, while simultaneously increasing customers’ trust and loyalty.

Keywords: circularity, sustainability, product design, material choice, education, awareness, willingness to pay

Procedia PDF Downloads 182
10494 Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach

Authors: Ilme Faridatul, Bo Wu

Abstract:

Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank.

Keywords: river bank, erosion and accretion, change monitoring, remote sensing

Procedia PDF Downloads 310
10493 Life Course Events, Residential and Job Relocation and Commute Time in Australian Cities

Authors: Solmaz Jahed Shiran, Elizabeth Taylor, John Hearne

Abstract:

Over the past decade a growing body of research, known as mobility biography approach has emerged that focuses on changes in travel behaviour over the life course of individuals. Mobility biographies suggest that changes in travel behaviour have a certain relation to important key events in life courses such as residential relocation, workplace changes, marriage and the birth of children. Taking this approach as the theoretical background, this study uses data from the Household, Income and Labor Dynamics Survey in Australia (HILDA) to model a set of life course events and their interaction with the commute time. By analysing longitudinal data, it is possible to assign different key events during the life course to change a person’s travel behaviour. Changes in the journey-to-work travel time is used as an indication of travel behaviour change in this study. Results of a linear regression model for change in commute time show a significant influence from socio-demographic factors like income and age, the previous home-to-work commute time and remoteness of the residence. Residential relocation and job change have significant influences on commute time. Other life events such as birth of a child, marriage and divorce or separation have also a strong impact on commute time change. Overall, the research confirms previous studies of links between life course events and travel behaviour.

Keywords: life course events, residential mobility, travel behaviour, commute time, job change

Procedia PDF Downloads 189
10492 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 300
10491 Effect of Combining Return Policy and Early Order Commitment on Supply Chain Performance

Authors: Hamed Homaei, Seyed Reza Hejazi, Iraj Mahdavi

Abstract:

Return policy (RP) is a strategy for supply chain coordination, whereby the retailer returns the unsold products to the manufacturer or the manufacturer offers a credit on unsold products to the retailer at the end of selling season. Early order commitment (EOC) is another efficient mechanism for channel coordination wherein the retailer commits to purchasing from the manufacturer a fixed order quantity a few periods in advance of the regular delivery lead time. This paper studies the coordination issue of a two-level supply chain with one retailer and one manufacturer through combining two mentioned contracts. The main purpose of this paper is to present an analytical model to show that how the contract which is created by combining RP and EOC can improve supply chain performance. Numerical analyses show that the supply chain coordination through mentioned contract in compare with EOC mechanism, can improve supply chain performance under certain ranges of model parameters. Furthermore, some numerical analyses are done to determine the best buyback price in order to achieve maximum cost saving in the supply chain. Finally, a revenue sharing scheme is presented in order to achieve a win-win condition in the supply chain.

Keywords: supply chain coordination, early order commitment, return policy, revenue sharing

Procedia PDF Downloads 273
10490 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 172
10489 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean

Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde

Abstract:

Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.

Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis

Procedia PDF Downloads 63