Search results for: learning center
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9097

Search results for: learning center

1087 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
1086 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marylin Wolf

Abstract:

This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver

Procedia PDF Downloads 390
1085 Image Recognition Performance Benchmarking for Edge Computing Using Small Visual Processing Unit

Authors: Kasidis Chomrat, Nopasit Chakpitak, Anukul Tamprasirt, Annop Thananchana

Abstract:

Internet of Things devices or IoT and Edge Computing has become one of the biggest things happening in innovations and one of the most discussed of the potential to improve and disrupt traditional business and industry alike. With rises of new hang cliff challenges like COVID-19 pandemic that posed a danger to workforce and business process of the system. Along with drastically changing landscape in business that left ruined aftermath of global COVID-19 pandemic, looming with the threat of global energy crisis, global warming, more heating global politic that posed a threat to become new Cold War. How emerging technology like edge computing and usage of specialized design visual processing units will be great opportunities for business. The literature reviewed on how the internet of things and disruptive wave will affect business, which explains is how all these new events is an effect on the current business and how would the business need to be adapting to change in the market and world, and example test benchmarking for consumer marketed of newer devices like the internet of things devices equipped with new edge computing devices will be increase efficiency and reducing posing a risk from a current and looming crisis. Throughout the whole paper, we will explain the technologies that lead the present technologies and the current situation why these technologies will be innovations that change the traditional practice through brief introductions to the technologies such as cloud computing, edge computing, Internet of Things and how it will be leading into future.

Keywords: internet of things, edge computing, machine learning, pattern recognition, image classification

Procedia PDF Downloads 155
1084 Development of Distance Training Packages for Teacher on Education Management for Learners with Special Needs

Authors: Jareeluk Ratanaphan

Abstract:

The purposed of this research were; 1. To survey the teacher’s needs on knowledge about special education management for special needs student 2. Development of distance training packages for teacher on special education management for special needs student 3. to study the effects of using the packages on trainee’s achievement 4. to study the effects of using the packages on trainee’s opinion on the distance training packages. The design of the experiment was research and development. The research sample for survey were 86 teachers, and 22 teachers for study the effects of using the packages on achievement and opinion. The research instrument comprised: 1) training packages on special education management for special needs student 2) achievement test 3) questionnaire. Mean, percentage, standard deviation, t-test and content analysis were used for data analysis. The findings of the research were as follows: 1. The teacher’s needs on knowledge about teaching for a learner with learning disability, mental retardation, autism, physical and health impairment and research in special education. 2. The package composed of special education management for special needs student document and manual of distance training packages. The document consisted by the name of packages, the explanation for the educator, content’s structure, concept, objectives, content and activities. Manual of distance training packages consisted by the explanation about a document, objectives, explanation about using the package, training schedule, and evaluation. The efficiency of packages was established at 79.50/81.35. 3. The results of using the packages were the posttest average scores of trainee’s achievement were higher than the pretest. 4. The trainee’s opinion on the package was at the highest level.

Keywords: distance training package, teacher, learner with special needs

Procedia PDF Downloads 489
1083 A Bibliometric Analysis of Ukrainian Research Articles on SARS-COV-2 (COVID-19) in Compliance with the Standards of Current Research Information Systems

Authors: Sabina Auhunas

Abstract:

These days in Ukraine, Open Science dramatically develops for the sake of scientists of all branches, providing an opportunity to take a more close look on the studies by foreign scientists, as well as to deliver their own scientific data to national and international journals. However, when it comes to the generalization of data on science activities by Ukrainian scientists, these data are often integrated into E-systems that operate inconsistent and barely related information sources. In order to resolve these issues, developed countries productively use E-systems, designed to store and manage research data, such as Current Research Information Systems that enable combining uncompiled data obtained from different sources. An algorithm for selecting SARS-CoV-2 research articles was designed, by means of which we collected the set of papers published by Ukrainian scientists and uploaded by August 1, 2020. Resulting metadata (document type, open access status, citation count, h-index, most cited documents, international research funding, author counts, the bibliographic relationship of journals) were taken from Scopus and Web of Science databases. The study also considered the info from COVID-19/SARS-CoV-2-related documents published from December 2019 to September 2020, directly from documents published by authors depending on territorial affiliation to Ukraine. These databases are enabled to get the necessary information for bibliometric analysis and necessary details: copyright, which may not be available in other databases (e.g., Science Direct). Search criteria and results for each online database were considered according to the WHO classification of the virus and the disease caused by this virus and represented (Table 1). First, we identified 89 research papers that provided us with the final data set after consolidation and removing duplication; however, only 56 papers were used for the analysis. The total number of documents by results from the WoS database came out at 21641 documents (48 affiliated to Ukraine among them) in the Scopus database came out at 32478 documents (41 affiliated to Ukraine among them). According to the publication activity of Ukrainian scientists, the following areas prevailed: Education, educational research (9 documents, 20.58%); Social Sciences, interdisciplinary (6 documents, 11.76%) and Economics (4 documents, 8.82%). The highest publication activity by institution types was reported in the Ministry of Education and Science of Ukraine (its percent of published scientific papers equals 36% or 7 documents), Danylo Halytsky Lviv National Medical University goes next (5 documents, 15%) and P. L. Shupyk National Medical Academy of Postgraduate Education (4 documents, 12%). Basically, research activities by Ukrainian scientists were funded by 5 entities: Belgian Development Cooperation, the National Institutes of Health (NIH, U.S.), The United States Department of Health & Human Services, grant from the Whitney and Betty MacMillan Center for International and Area Studies at Yale, a grant from the Yale Women Faculty Forum. Based on the results of the analysis, we obtained a set of published articles and preprints to be assessed on the variety of features in upcoming studies, including citation count, most cited documents, a bibliographic relationship of journals, reference linking. Further research on the development of the national scientific E-database continues using brand new analytical methods.

Keywords: content analysis, COVID-19, scientometrics, text mining

Procedia PDF Downloads 115
1082 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System

Authors: Iwan Cony Setiadi, Aulia M. T. Nasution

Abstract:

The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).

Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network

Procedia PDF Downloads 322
1081 Multilingualism as an Impetus to Nigerian Religious and Political Crises: the Way Forward

Authors: Kehinde, Taye Adetutu

Abstract:

The fact that Nigeria as a nation is faced by myriads of problems associated with religious crises and political insecurity is no news, the spoken statement and actions of most political giant were the major cause of this unrest. The 'unlearnt' youth within the regions has encompassed the situation. This scenario is further compounded by multilingual nature of the country as it is estimated that there exists amount 400 indigenous languages in Nigeria. It is an indisputable fact that english language which has assumed the status of an official language in Nigeria, given its status has a language of power and captivity by a few with no privilege to attend school. However, educating people in their indigenous language; crises can be averted through the proper orientation and mass literacy campaign, especially for the timid illiterate one, so as to live in unity, peace, tranquillity, and harmony as indivisible nation. In investigating the problem in this study with an emphasis on three major Nigerian language (Yoruba, Igbo and Hausa), participants observations and survey questionnaire were administered to about one hundred and twenty (120) respondents who were randomly selected throughout the three major ethnic groups in Nigeria. Findings from this study reveals that teaching and learning of cognitive words and information are more effective in ones mother tongue and helps in stimulating new ideas and changes. This paper was able to explore and critically examine the current state of affairs in Nigeria and proffer possible solutions to the prevailing situations by identifying how indigenous languages and linguistics can be used to ameliorate the present political and religious crisis for Nigeria, thus providing a proper recommendation to achieve meaningful stability and coexistence within a nation.

Keywords: multilingualism, political crisis, religious, Nigeria

Procedia PDF Downloads 440
1080 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
1079 Time Series Simulation by Conditional Generative Adversarial Net

Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto

Abstract:

Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.

Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series

Procedia PDF Downloads 143
1078 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 81
1077 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 54
1076 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
1075 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
1074 A Survey of WhatsApp as a Tool for Instructor-Learner Dialogue, Learner-Content Dialogue, and Learner-Learner Dialogue

Authors: Ebrahim Panah, Muhammad Yasir Babar

Abstract:

Thanks to the development of online technology and social networks, people are able to communicate as well as learn. WhatsApp is a popular social network which is growingly gaining popularity. This app can be used for communication as well as education. It can be used for instructor-learner, learner-learner, and learner-content interactions; however, very little knowledge is available on these potentials of WhatsApp. The current study was undertaken to investigate university students’ perceptions of WhatsApp used as a tool for instructor-learner dialogue, learner-content dialogue, and learner-learner dialogue. The study adopted a survey approach and distributed the questionnaire developed by Google Forms to 54 (11 males and 43 females) university students. The obtained data were analyzed using SPSS version 20. The result of data analysis indicates that students have positive attitudes towards WhatsApp as a tool for Instructor-Learner Dialogue: it easy to reach the lecturer (4.07), the instructor gives me valuable feedback on my assignment (4.02), the instructor is supportive during course discussion and offers continuous support with the class (4.00). Learner-Content Dialogue: WhatsApp allows me to academically engage with lecturers anytime, anywhere (4.00), it helps to send graphics such as pictures or charts directly to the students (3.98), it also provides out of class, extra learning materials and homework (3.96), and Learner-Learner Dialogue: WhatsApp is a good tool for sharing knowledge with others (4.09), WhatsApp allows me to academically engage with peers anytime, anywhere (4.07), and we can interact with others through the use of group discussion (4.02). It was also found that there are significant positive correlations between students’ perceptions of Instructor-Learner Dialogue (ILD), Learner-Content Dialogue (LCD), Learner-Learner Dialogue (LLD) and WhatsApp Application in classroom. The findings of the study have implications for lectures, policy makers and curriculum developers.

Keywords: instructor-learner dialogue, learners-contents dialogue, learner-learner dialogue, whatsapp application

Procedia PDF Downloads 158
1073 Empowering Women through the Fishermen of Functional Skills for City Gorontalo Indonesia

Authors: Abdul Rahmat

Abstract:

Community-based education in the economic empowerment of the family is an attempt to accelerate human development index (HDI) Dumbo Kingdom District of Gorontalo economics (purchasing power) program developed in this activity is the manufacture of functional skills shredded fish, fish balls, fish nuggets, chips anchovies, and corn sticks fish. The target audience of this activity is fishing se mothers subdistrict Dumbo Kingdom include Talumolo Village, Village Botu, Kampung Bugis Village, Village North and Sub Leato South Leato that each village is represented by 20 participants so totaling 100 participants. Time activities beginning in October s/d November 2014 held once a week on every Saturday at 9.00 s/d 13:00/14:00. From the results of the learning process of testing the skills of functional skills of making shredded fish, fish balls, fish nuggets, chips anchovies, fish and corn sticks residents have additional knowledge and experience are: 1) Order the concept include: nutrient content, processing food with fish raw materials , variations in taste, packaging, pricing and marketing sales. 2) Products made: in accordance with the wishes of the residents learned that estimated Eligible selling, product packaging logo creation, preparation and realization of the establishment of Business Study Group (KBU) and pioneered the marketing network with restaurant, store / shop staple food vendors that are around CLC.

Keywords: community development, functional skills, gender, HDI

Procedia PDF Downloads 313
1072 Multimedia Technologies Utilisation as Predictors of Lecturers’ Teaching Effectiveness in Colleges of Education in South-West, Nigeria

Authors: Abel Olusegun Egunjobi, Olusegun Oyeleye Adesanya

Abstract:

Teaching effectiveness of lecturers in a tertiary institution in Nigeria is one of the determinants of the lecturer’s productivity. In this study, therefore, lecturers’ teaching effectiveness was examined vis-à-vis their multimedia technologies utilisation in Colleges of Education (CoE) in South-West, Nigeria. This is for the purpose of ascertaining the relationship and contribution of multimedia technologies utilisation to lecturers’ teaching effectiveness in Nigerian colleges of education. The descriptive survey research design was adopted in the study, while a multi-stage sampling procedure was used in the study. A stratified sampling technique was used to select colleges of education, and a simple random sampling method was employed to select lecturers from the selected colleges of education. A total of 862 lecturers (627 males and 235 females) were selected from the colleges of education used for the study. The instrument used was lecturers’ questionnaire on multimedia technologies utilisation and teaching effectiveness with a reliability coefficient of 0.85 at 0.05 level of significance. The data collected were analysed using descriptive statistics, multiple regression, and t-test. The findings showed that the level of multimedia technologies utilisation in colleges of education was low, whereas lecturers’ teaching effectiveness was high. Findings also revealed that the lecturers used multimedia technologies purposely for personal and professional developments, so also for up to date news on economic and political matters. Also, findings indicated that laptop, Ipad, CD-ROMs, and computer instructional software were the multimedia technologies frequently utilised by the lecturers. There was also a significant difference in the teaching effectiveness between lecturers in the Federal and State COE. The government should, therefore, make adequate provision for multimedia technologies in the COE in Nigeria for lecturers’ utilisation in their instructions so as to boost their students’ learning outcomes.

Keywords: colleges of education, lecturers’ teaching effectiveness, multimedia technologies utilisation, Southwest Nigeria

Procedia PDF Downloads 140
1071 Ethnic Tourism and Real Estate Development: A Case of Yiren Ancient Town, China

Authors: Li Yang

Abstract:

Tourism is employed by many countries to facilitate socioeconomic development and to assist in the heritage preservation. An “ethnic culture boom” is currently driving the tourism industry in China. Ethnic minorities, commonly portrayed as primitive, colorful and exotic, have become a big tourist draw. Many cultural attractions have been built throughout China to meet the demands of domestic tourists. Sacred cultural heritage sites have been rehabilitated as a major component of ethnic tourism. The purpose of this study is to examine the interconnected consequences of tourism development and tourism-related leisure property development and, and to discuss, in a broader context, issues and considerations that are pertinent to the management and development of ethnic attractions. The role of real estate in tourism development and its sociocultural consequences are explored. An empirical research was conducted in Yiren Ancient Town (literally, "Ancient Town of Yi People") in Chuxiong City, Yunnan Province, China. Multiple research methods, including in-depth interviews, informal discussions, on-site observations, and secondary data review were employed to measure residents and tourism decision-makers’ perceptions of ethnic tourism and to explore the impacts of tourism on local community. Key informants from government officials, tourism developers and local communities were interviewed individually to gather what they think about benefits and costs of tourism, and what their concerns about and hopes for tourism development are. Yiren Ancient Town was constructed in classical Yi architecture style featuring tranquil garden scenery. Commercial streets, entertainment complexes, and accommodation facilities occupied the center of the town, creating culturally distinctive and visually stimulating places for tourists. A variety of activities are presented to visitors, including walking tours of the town, staged dance shows, musical performances, ethnic festivals and ceremonies, tasting minority food and wedding shows. This study reveals that tourism real estate has transformed the town from a traditional neighborhood into diverse real estate landscapes. Ethnic architecture, costumes, festivals and folk culture have been represented, altered and reinvented through the tourist gaze and mechanisms of cultural production. Tourism is now a new economic driver of the community providing opportunities for the creation of small businesses. There was a general appreciation in the community that tourism has created many employment opportunities, especially for self-employment. However, profit-seeking is a primary motivation for the government, developers, businesses, and other actors involved in the tourism development process. As the town has attracted an increasing number of visitors, commercialization and business competition are intense in the town. Many residents complained about elevated land prices, making the town and the surroundings comparatively high-value locales. Local community is also concerned about the decline of traditional ethnic culture and an erosion of the sense of identity and place. A balance is difficult to maintain between protection and development. The preservation of ethnic culture and heritage should be enhanced if long-term sustainable development of tourism is to occur and the loss of ethnic identities is to be avoided.

Keywords: ancient town, ethnic tourism, local community, real estate, China

Procedia PDF Downloads 279
1070 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection

Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew

Abstract:

The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.

Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.

Procedia PDF Downloads 47
1069 Chronic Cognitive Impacts of Mild Traumatic Brain Injury during Aging

Authors: Camille Charlebois-Plante, Marie-Ève Bourassa, Gaelle Dumel, Meriem Sabir, Louis De Beaumont

Abstract:

To the extent of our knowledge, there has been little interest in the chronic effects of mild traumatic brain injury (mTBI) on cognition during normal aging. This is rather surprising considering the impacts on daily and social functioning. In addition, sustaining a mTBI during late adulthood may increase the effect of normal biological aging in individuals who consider themselves normal and healthy. The objective of this study was to characterize the persistent neuropsychological repercussions of mTBI sustained during late adulthood, on average 12 months prior to testing. To this end, 35 mTBI patients and 42 controls between the ages of 50 and 69 completed an exhaustive neuropsychological assessment lasting three hours. All mTBI patients were asymptomatic and all participants had a score ≥ 27 at the MoCA. The evaluation consisted of 20 standardized neuropsychological tests measuring memory, attention, executive and language functions, as well as information processing speed. Performance on tests of visual (Brief Visuospatial Memory Test Revised) and verbal memory (Rey Auditory Verbal Learning Test and WMS-IV Logical Memory subtest), lexical access (Boston Naming Test) and response inhibition (Stroop) revealed to be significantly lower in the mTBI group. These findings suggest that a mTBI sustained during late adulthood induces lasting effects on cognitive function. Episodic memory and executive functions seem to be particularly vulnerable to enduring mTBI effects.

Keywords: cognitive function, late adulthood, mild traumatic brain injury, neuropsychology

Procedia PDF Downloads 169
1068 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 19
1067 Meaning and Cultivating Factors of Mindfulness as Experienced by Thai Females Who Practice Dhamma

Authors: Sukjai Charoensuk, Penphan Pitaksongkram, Michael Christopher

Abstract:

Preliminary evidences supported the effectiveness of mindfulness-based interventions in reducing symptoms associated with a variety of medical and psychological conditions. However, the measurements of mindfulness are questionable since they have not been developed based-on Buddhist experiences. The purpose of this qualitative study was to describe meaning and cultivating factors of mindfulness as experienced by Thai females who practice Dhamma. Participants were purposively selected to include 2 groups of Thai females who practice Dhamma. The first group consisted of 6 female Buddhist monks, and the second group consisted of 7 female who practice Dhamma without ordaining. Data were collected using in-depth interview. The instruments used were demographic data questionnaire and guideline for in-depth interview developed by researchers. Content analysis was employed to analyze the data. The results revealed that Thai women who practice Dhamma described their experience in 2 themes, which were meaning and cultivating factors of mindfulness. The meaning composed of 4 categories; 1) Being Present, 2) Self-awareness, 3) Contemplation, and 4) Neutral. The cultivating factors of mindfulness composed of 2 categories; In-personal factors and Ex-personal factors. The In-personal cultivating factors included 4 sub-categories; Faith and Love, the Five Precepts, Sound body, and Practice. The Ex-personal cultivating factors included 2 sub-categories; Serenity, and Learning. These findings increase understanding about meaning of mindfulness and its cultivating factors. These could be used as a guideline to promote mental health and develop nursing interventions using mindfulness based, as well as, develop the instrument for assessing mindfulness in Thai context.

Keywords: cultivating factor, meaning of mindfulness, practice Dhamma, Thai women

Procedia PDF Downloads 351
1066 Training the Hospitality Entrepreneurship on the Account of Constructing Nascent Entrepreneurial Competence

Authors: Ching-Hsu Huang, Yao-Ling Liu

Abstract:

Over the past several decades there has been considerable research on the topics of entrepreneurship education and nascent entrepreneurial competence. The purpose of this study is to explore the nascent entrepreneurial competence within entrepreneurship education via the use of three studies. It will be a three-phrases longitudinal study and the effective plan will combine the qualitative and quantitative mixed research methodology in order to understand the issues of nascent entrepreneurship and entrepreneurial competence in hospitality industry in Taiwan. In study one, the systematic literature reviews and twelve nascent entrepreneurs who graduated from hospitality management department will be conducted simultaneously to construct the nascent entrepreneurial competence indicators. Nine subjects who are from industry, government, and academia will be the decision makers in terms of forming the systematic nascent entrepreneurial competence indicators. The relative importance of indicators to each decision maker will be synthesized and compared using the Analytic Hierarchy Process method. According to the results of study one, this study will develop the teaching module of nascent hospitality entrepreneurship. It will include the objectives, context, content, audiences, assessment, pedagogy and outcomes. Based on the results of the second study, the quasi-experiment will be conducted in third study to explore the influence of nascent hospitality entrepreneurship teaching module on learners’ learning effectiveness. The nascent hospitality entrepreneurship education program and entrepreneurial competence will be promoted all around the hospitality industry and vocational universities. At the end, the implication for designing the nascent hospitality entrepreneurship teaching module and training programs will be suggested for the nascent entrepreneurship education. All of the proposed hypotheses will be examined and major finding, implication, discussion, and recommendations will be provided for the government and education administration in hospitality field.

Keywords: entrepreneurial competence, hospitality entrepreneurship, nascent entrepreneurial, training in hospitality entrepreneurship

Procedia PDF Downloads 244
1065 Relational Effect of Parent Interest, Basic School Attended, Gender, and Scare of Basic School Mathematics Teacher on Student Interest in Mathematics

Authors: Yarhands Dissou Arthur, Samuel Asiedu Addo, Jonathan Annan

Abstract:

Interest in subject specific is very essential in the quest to ensure effective teaching and learning. In building interest in subject specific areas requires certain factors and strategies well-spelled out.The factors such as the gender of the student, the type of basic school attended, the parent interest as well as the scare of the basic school mathematics teacher is very important to consider. The relational effect and the contribution these above mentioned variables on student have not been fully investigated and this paper address the effect of these factors on the student interest. In the attainment of this goal, the current paper addresses the effect of parent interest, the type of basic school attended, the scare by basic school mathematics teacher and its effect on student’s interest in mathematics. A cross sectional data collected from two hundred and sixty post-secondary school student were analyzed using descriptive and inferential statistical methods by aid of SPSS version 16. The study found that parent interest and value for mathematics significantly influenced students interest and joy in solving mathematical problems. Moreover, we also observed that the fear imposed by basic school mathematics teachers was found to significantly influence students’ interest. The study further found that the type of basic school attended and gender are factors that do not influence students’ interest in mathematics. In addition to concluding that a student’s interest is influenced by both parent interest and the fear of basic school mathematics teacher, the study also showed that the type of basic school attended and gender does not affect the students’ interest in mathematics.

Keywords: gender, mathematics interest, teacher interest, teacher interest, student interest

Procedia PDF Downloads 367
1064 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile

Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa

Abstract:

Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.

Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha

Procedia PDF Downloads 200
1063 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies

Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk

Abstract:

Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, this project proposes AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project presents the best-in-school techniques used to preserve the data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptographic techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures and identifies potential correction/mitigation measures.

Keywords: data privacy, artificial intelligence (AI), healthcare AI, data sharing, healthcare organizations (HCOs)

Procedia PDF Downloads 93
1062 The Safe Introduction of Tocilizumab for the Treatment of SARS-CoV-2 Pneumonia at an East London District General Hospital

Authors: Andrew Read, Alice Parry, Kate Woods

Abstract:

Since the advent of the SARS-CoV-2 pandemic, the search for medications that can reduce mortality and morbidity has been a global research priority. Several multi-center trials have recently demonstrated improved mortality associated with the use of Tocilizumab, an interleukin-6 receptor antagonist, in patients with severe SARS-CoV-2 pneumonia. Initial data supported the administration in patients requiring respiratory support (non-invasive or invasive ventilation), but more recent data has shown benefit in all hypoxic patients. At the height of the second wave of COVID-19 infections in London, our hospital introduced the use of Tocilizumab for patients with severe COVID-19. Tocilizumab is licensed for use in chronic inflammatory conditions and has been associated with an increased risk of severe bacterial and fungal infections, as well as reactivation of chronic viral infections (e.g., hepatitis B). It is a specialist drug that suppresses the formation of C-reactive protein (CRP) for 6 – 12 weeks. It is not widely used by the general medical community. We aimed to assess Tocilizumab use in our hospital and to implement changes to the protocol as required to ensure administration was safe and appropriate. A retrospective study design was used to assess prescriptions over an initial 3-week period in both intensive care and on the medical wards. This amounted to a total of 13 patients. The initial data collection identified four key areas of concern: adherence to national and local inclusion & exclusion criteria; a collection of appropriate screening blood prior to administration; documentation of informed consent or best interest decision and documentation of Tocilizumab administration on patient discharge information, to alert future healthcare providers that typical measures of inflammation and infection, such as CRP, are unreliable for up to 3-months. Data were collected from electronic notes, blood results and observation charts, and cross referenced with pharmacy data. Initial results showed that all four key areas were completed in approximately 50% of cases. Of particular concern was adherence to exclusion criteria, such as current evidence of bacterial infection, and ensuring the correct screening blood was sent to exclude infections such as hepatitis. To remedy this and improve patient safety, the initial data was presented to relevant healthcare professionals. Subsequently, three interventions were introduced and education on each provided to hospital staff. An electronic ‘order set’ collating the appropriate screening blood was created simplifying the screening process. Pre-formed electronic documentation which can be inserted into the notes was created to provide a framework for consent discussions and reduce the time needed for junior doctors to complete this task. Additionally, a ‘Tocilizumab’ administration card was created and administered via pharmacy. This was distributed to each patient on discharge to ensure future healthcare professionals were aware of the potential effects of Tocilizumab administration, including suppression of CRP. Following these changes, repeat data collection over two months illustrated that each of the 4 safety aspects was met with a 100% success rate in every patient. Although this demonstrates good progress and effective interventions the challenge will be to maintain this progress. The audit data collection is ongoing

Keywords: education, patient safety , SARS-CoV-2, Tocilizumab

Procedia PDF Downloads 175
1061 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 120
1060 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 554
1059 The Impact of Technology on Media Content Regulation

Authors: Eugene Mashapa

Abstract:

The age of information has witnessed countless unprecedented technological developments, which signal the articulation of succinct technological capabilities that can match these cutting-edge technological trends. These changes have impacted patterns in the production, distribution, and consumption of media content, a space that the Film and Publication Board (FPB) is concerned with. Consequently, the FPB is keen to understand the nature and impact of these technological changes on media content regulation. This exploratory study sought to investigate how content regulators in high and middle-income economies have adapted to the changes in this space, seeking insights into innovations, technological and operational, that facilitate continued relevance during this fast-changing environment. The study is aimed at developing recommendations that could assist and inform the organisation in regulating media content as it evolves. Thus, the overall research strategy in this analysis is applied research, and the analytical model adopted is a mixed research design guided by both qualitative and quantitative research instruments. It was revealed in the study that the FPB was significantly impacted by the unprecedented technological advancements in the media regulation space. Additionally, there exists a need for the FPB to understand the current and future penetrations of 4IR technology in the industry and its impact on media governance and policy implementation. This will range from reskilling officials to align with the technological skills to developing technological innovations as well as adopting co-regulatory or self-regulatory arrangements together with content distributors, where more content is distributed in higher volumes and with increased frequency. Importantly, initiating an interactive learning process for both FPB employees and the general public can assist the regulator and improve FPB’s operational efficiency and effectiveness.

Keywords: media, regulation, technology, film and publications board

Procedia PDF Downloads 106
1058 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 78