Search results for: digital learning objects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10156

Search results for: digital learning objects

2146 Plant Leaf Recognition Using Deep Learning

Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath

Abstract:

Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.

Keywords: convolutional autoencoder, anomaly detection, web application, FLASK

Procedia PDF Downloads 163
2145 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 108
2144 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement

Authors: Lunliang Zhong, Bin Duan

Abstract:

The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.

Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling

Procedia PDF Downloads 18
2143 Ecological and Cartographic Study of the Cork OAK of the Forest of Mahouna, North-Eastern of Algeria

Authors: Amina Beldjazia, Djamel Alatou, Khaled Missaoui

Abstract:

The forest of Mahouna is a part of the mountain range of the Tell Atlas in the northeast of Algeria. It is characterized by a significant biodiversity. The management of this resource requires thorough the understanding of the current state of the vegetation (inventories), degradation factors and ongoing monitoring of the various long-term ecological changes. Digital mapping is a very effective way to in-depth knowledge of natural resources. The realization of a vegetation map based on satellite images, aerial photographs and the use of geographic information system (GIS), shows large values results of the vegetation of the massif in the scientific view point (the development of a database of the different formations that exist on the site, ecological conditions) and economic (GIS facilitate our task of managing the various resources and diversity of the forest). The methodology is divided into three stages: the first involves an analysis of climate data (1988 to 2013); the second is to conduct field surveys (soil and phytoecological) during the months of June and July 2013 (10 readings), the third is based on the development of different themes and synthetic cards by software of GIS (ENVI 4.6 and 10 ARCMAP). The results show: cork oak covers an area of 1147 ha. Depending on the environmental conditions, it rests on sandstone and individualizes between 3 layers of vegetation from thermo-mediterranean (the North East part with 40ha), meso-Mediterranean (1061 ha) and finally the supra-Mediterranean (46ha ). The map shows the current actual state of the cork oak forest massif of Mahouna, it is an older forest (>150 years) where regeneration is absent because of several factors (fires, overgrazing, leaching, erosion, etc.). The cork oak is in the form of dense forest with Laburnum and heather as the dominant species. It may also present in open forest dominated by scrub species: Daphne gniduim, Erica arborea, Calycotome spinosa, Phillyrea angustifolia, Lavandula stoechas, Cistus salvifolius.

Keywords: biodiversity, environmental, Mahouna, Cork oak

Procedia PDF Downloads 443
2142 A Study on the Effect of Different Climate Conditions on Time of Balance of Bleeding and Evaporation in Plastic Shrinkage Cracking of Concrete Pavements

Authors: Hasan Ziari, Hassan Fazaeli, Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri

Abstract:

The presence of cracks in concrete pavements is a place for the ingression of corrosive substances, acids, oils, and water into the pavement and reduces its long-term durability and level of service. One of the causes of early cracks in concrete pavements is the plastic shrinkage. This shrinkage occurs due to the formation of negative capillary pressures after the equilibrium of the bleeding and evaporation rates at the pavement surface. These cracks form if the tensile stresses caused by the restrained shrinkage exceed the tensile strength of the concrete. Different climate conditions change the rate of evaporation and thus change the balance time of the bleeding and evaporation, which changes the severity of cracking in concrete. The present study examined the relationship between the balance time of bleeding and evaporation and the area of cracking in the concrete slabs using the standard method ASTM C1579 in 27 different environmental conditions by using continuous video recording and digital image analyzing. The results showed that as the evaporation rate increased and the balance time decreased, the crack severity significantly increased so that by reducing the balance time from the maximum value to its minimum value, the cracking area increased more than four times. It was also observed that the cracking area- balance time curve could be interpreted in three sections. An examination of these three parts showed that the combination of climate conditions has a significant effect on increasing or decreasing these two variables. The criticality of a single factor cannot cause the critical conditions of plastic cracking. By combining two mild environmental factors with a severe climate factor (in terms of surface evaporation rate), a considerable reduction in balance time and a sharp increase in cracking severity can be prevented. The results of this study showed that balance time could be an essential factor in controlling and predicting plastic shrinkage cracking in concrete pavements. It is necessary to control this factor in the case of constructing concrete pavements in different climate conditions.

Keywords: bleeding and cracking severity, concrete pavements, climate conditions, plastic shrinkage

Procedia PDF Downloads 146
2141 Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients

Authors: Leander Van Neste, Kirk Wojno

Abstract:

The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA.

Keywords: circulating monocytes, phagocytic cells, prostate cancer, tumor immune response

Procedia PDF Downloads 162
2140 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System

Authors: Getaneh Berie Tarekegn

Abstract:

Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.

Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles

Procedia PDF Downloads 57
2139 Practice Based Approach to the Development of Family Medicine Residents’ Educational Environment

Authors: Lazzat M. Zhamaliyeva, Nurgul A. Abenova, Gauhar S. Dilmagambetova, Ziyash Zh. Tanbetova, Moldir B. Ahmetzhanova, Tatyana P. Ostretcova, Aliya A. Yegemberdiyeva

Abstract:

Introduction: There are many reasons for the weak training of family doctors in Kazakhstan: the unified national educational program is not focused on competencies, the role of a general practitioner (GP) is not clear, poor funding for the health care and education system, outdated teaching and assessment methods, inefficient management. We highlight two issues in particular. Firstly, academic teachers of family medicine (FM) in Kazakhstan do not practice as family doctors; most of them are narrow specialists (pediatricians, therapists, surgeons, etc.); they usually hold one-time consultations; clinical mentors from practical healthcare (non-academic teachers) do not have the teaching competences, and the vast majority of them are also narrow specialists. Secondly, clinical sites (polyclinics) are unprepared for general practice and do not follow the principles of family medicine; residents do not like to be in primary health care (PHC) settings due to the chaos that is happening there, as well as due to the lack of the necessary equipment for mastering and consolidating practical skills. Aim: We present the concept of the family physicians’ training office (FPTO), which is being created as a friendly learning environment for young general practitioners and for the involvement of academic teachers of family medicine in the practical work and innovative development of PHC. Methodology: In developing the conceptual framework and identifying practical activities, we drew on literature and expert input, and interviews. Results: The goal of the FPTO is to create a favorable educational and clinical environment for the development of the FM residents’ competencies, in which the residents with academic teachers and clinical mentors could understand and accept the principles of family medicine, improve clinical knowledge and skills, and gain experience in improving the quality of their practice in scientific basis. Three main areas of office activity are providing primary care to the patients, improving educational services for FM residents and other medical workers, and promoting research in PHC and innovations. The office arranges for residents to see outpatients at least 50% of the time, and teachers of FM departments at least 1/4 of their working time conduct general medical appointments next to residents. Taking into account the educational and scientific workload, the number of attached population for one GP does not exceed 500 persons. The equipment of the office allows FPTO workers to perform invasive and other manipulations without being sent to other clinics. In the office, training for residents is focused on their needs and aimed at achieving the required level of competence. International methodologies and assessment tools are adapted to local conditions and evaluated for their effectiveness and acceptability. Residents and their faculty actively conduct research in the field of family medicine. Conclusions: We propose to change the learning environment in order to create teams of like-minded people, to unite residents and teachers even more for the development of family medicine. The offices will also invest resources in developing and maintaining young doctors' interest in family medicine.

Keywords: educational environment, family medicine residents, family physicians’ training office, primary care research

Procedia PDF Downloads 134
2138 Urban Refugees and Education in Developing Countries

Authors: Sheraz Akhtar

Abstract:

In recent years, a massive influx of refugees into developing countries has placed significant constraints on the host government’s capacities to provide social services, including education, to all. As a result, the refugee communities often find themselves deprived of their rights to education in these host countries, particularly for those who to live outside camps in urban locations. While previous research has examined the educational experiences of refugees who have resettled in developed nations, there remains a dearth of research on the educational experiences of urban refugees in developing nations. This study examines this issue through a case study of Pakistani Christian refugees living in urban settings in Thailand. Using a combination of observations within community learning centres set up by international non-government organisations (INGOs) working with these communities, and interviews with young Pakistani Christian refugees and their families, the research aims to give greater voice to the Pakistani Christian refugee community living in Thailand, and better understand their educational aspirations.

Keywords: Education, Developing Countries , INGOs, Urban Refugees

Procedia PDF Downloads 125
2137 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications

Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui

Abstract:

Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.

Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow

Procedia PDF Downloads 269
2136 Knowledge and Attitude: Challenges for Continuing Education in Health

Authors: André M. Senna, Mary L. G. S. Senna, Rosa M. Machado-de-Sena

Abstract:

One of the great challenges presented in educational practice is how to ensure the students not only acquire knowledge of training courses throughout their academic life, but also how to apply it in their current professional activities. Consequently, aiming to incite changes in the education system of healthcare professionals noticed the inadequacy of the training providers to solve the social problems related to health, the education related to these procedures should initiate in the earliest years of process. Following that idea, there is another question that needs an answer: If the change in the education should start sooner, in the period of basic training of healthcare professionals, what guidelines should a permanent education program incorporate to promote changes in an already established system? For this reason, the objective of this paper is to present different views of the teaching-learning process, with the purpose of better understanding the behavior adopted by healthcare professionals, through bibliographic study. The conclusion was that more than imparting knowledge to the individual, a larger approach is necessary on permanent education programs concerning the performance of professional health services in order to foment significant changes in education.

Keywords: Health Education, continuing education, training, behavior

Procedia PDF Downloads 263
2135 Teaching Computer Programming to Diverse Students: A Comparative, Mixed-Methods, Classroom Research Study

Authors: Almudena Konrad, Tomás Galguera

Abstract:

Lack of motivation and interest is a serious obstacle to students’ learning computing skills. A need exists for a knowledge base on effective pedagogy and curricula to teach computer programming. This paper presents results from research evaluating a six-year project designed to teach complex concepts in computer programming collaboratively, while supporting students to continue developing their computer thinking and related coding skills individually. Utilizing a quasi-experimental, mixed methods design, the pedagogical approaches and methods were assessed in two contrasting groups of students with different socioeconomic status, gender, and age composition. Analyses of quantitative data from Likert-scale surveys and an evaluation rubric, combined with qualitative data from reflective writing exercises and semi-structured interviews yielded convincing evidence of the project’s success at both teaching and inspiring students.

Keywords: computational thinking, computing education, computer programming curriculum, logic, teaching methods

Procedia PDF Downloads 316
2134 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
2133 Quality Assurance in Translation Crowdsourcing: The TED Open Translation Project

Authors: Ya-Mei Chen

Abstract:

The participatory culture enabled by Web 2.0 technologies has led to the emergence of online translation crowdsourcing, which mainly relies on the collective intelligence of volunteer translators. Due to the fact that many volunteer translators do not have formal translator training, concerns have been raised about the quality of crowdsourced translations. Some empirical research has been done to examine the translation quality of for-profit crowdsourcing initiatives. However, quality assurance of non-profit translation crowdsourcing has rarely been explored in detail. Using the TED Open Translation Project as a case study, this paper investigates how the translation-review-approval method adopted by TED can (1) direct the volunteer translators’ use of translation strategies as well as the reviewers’ adoption of revising strategies and (2) shape the final translation products. To well examine the actual effect of TED’s translation-review-approval method, this paper will focus on its two major quality assurance mechanisms, that is, TED’s style guidelines and quality review. Based on an anonymous questionnaire, this research will first explore whether the volunteer translators and reviewers are aware of the style guidelines and whether their use of translation strategies is similar to that advised in the guidelines. The questionnaire, which will be posted online, will consist of two parts: demographic information and translation strategies. The invitations to complete it will then be distributed through TED Translator Facebook groups. With an aim to investigate if the style guidelines have any substantial impacts on actual subtitling practices, a comparison will be made between the original English subtitles of 20 TED talks (each around 5 to 7 minutes) and their Chinese subtitle translations to identify regularly adopted strategies. Concerning the function of the reviewing stage, a comparative study will be conducted between the drafts of Chinese subtitles for 10 short English talks and the revised versions of these drafts so as to examine the actual revising strategies and their effect on translation quality. According to the results obtained from the questionnaire and textual comparisons, this paper will provide in-depth analysis of quality assurance of the TED Open Translation Project. It is hoped that this research, through a detailed investigation of non-profit translation crowdsourcing, can enable translation researchers and practitioners to have a better understanding of quality control in translation crowdsourcing in the digital age.

Keywords: quality assurance, TED, translation crowdsourcing, volunteer translators

Procedia PDF Downloads 231
2132 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 116
2131 Pupils' and Teachers' Perceptions and Experiences of Welsh Language Instruction

Authors: Mirain Rhys, Kevin Smith

Abstract:

In 2017, the Welsh Government introduced an ambitious, new strategy to increase the number of Welsh speakers in Wales to 1 million by 2050. The Welsh education system is a vitally important feature of this strategy. All children attending state schools in Wales learn Welsh as a second language until the age of 16 and are assessed at General Certificate of Secondary Education (GCSE) level. In 2013, a review of Welsh second language instruction in Key Stages 3 and 4 was completed. The report identified considerable gaps in teachers’ preparation and training for teaching Welsh; poor Welsh language ethos at many schools; and a general lack of resources to support the instruction of Welsh. Recommendations were made across a number of dimensions including curriculum content, pedagogical practice, and teacher assessment, training, and resources. With a new national curriculum currently in development, this study builds on this review and provides unprecedented detail into pupils’ and teachers’ perceptions of Welsh language instruction. The current research built on data taken from an existing capacity building research project on Welsh education, the Wales multi-cohort study (WMS). Quantitative data taken from WMS surveys with over 1200 pupils in schools in Wales indicated that Welsh language lessons were the least enjoyable subject among pupils. The current research aimed to unpick pupil experiences in order to add to the policy development context. To achieve this, forty-four pupils and four teachers in three schools from the larger WMS sample participated in focus groups. Participants from years 9, 11 and 13 who had indicated positive, negative and neutral attitudes towards the Welsh language in a previous WMS survey were selected. Questions were based on previous research exploring issues including, but not limited to pedagogy, policy, assessment, engagement and (teacher) training. A thematic analysis of the focus group recordings revealed that the majority of participants held positive views around keeping the language alive but did not want to take on responsibility for its maintenance. These views were almost entirely based on their experiences of learning Welsh at school, especially in relation to their perceived lack of choice and opinions around particular lesson strategies and assessment. Analysis of teacher interviews highlighted a distinct lack of resources (materials and staff alike) compared to modern foreign languages, which had a negative impact on student motivation and attitudes. Both staff and students indicated a need for more practical, oral language instruction which could lead to Welsh being used outside the classroom. The data corroborate many of the review’s previous findings, but what makes this research distinctive is the way in which pupils poignantly address generally misguided aims for Welsh language instruction, poor pedagogical practice and a general disconnect between Welsh instruction and its daily use in their lives. These findings emphasize the complexity of incorporating the educational sector in strategies for Welsh language maintenance and the complications arising from pedagogical training, support, and resources, as well as teacher and pupil perceptions of, and attitudes towards, teaching and learning Welsh.

Keywords: bilingual education, language maintenance, language revitalisation, minority languages, Wales

Procedia PDF Downloads 112
2130 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 409
2129 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia

Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy

Abstract:

The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.

Keywords: procrastination, psychology, analyze needs, behavior

Procedia PDF Downloads 381
2128 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
2127 The Role of ChatGPT in Enhancing ENT Surgical Training

Authors: Laura Brennan, Ram Balakumar

Abstract:

ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.

Keywords: artificial intelligence, otolaryngology, surgical training, medical education

Procedia PDF Downloads 159
2126 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 218
2125 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
2124 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce

Authors: Hang Wang, Xiaoming Gao

Abstract:

The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.

Keywords: big data, consumption centers, e-commerce, urban planning, jinan

Procedia PDF Downloads 21
2123 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 58
2122 The Influencing Factors of Export Performance Amongst Halal Small and Medium-Sized Enterprises (SMEs) in Malaysia

Authors: Shanorfizah Mohd Safar, Shaizatulaqma Kamalul Ariffin

Abstract:

Internationalization of halal small and medium-sized enterprises (SMEs) is necessary for SMEs to become more involved in regional trade and business cooperation. By internationalization, SMEs' profit can increase, and market expansion of SMEs is basic for rising economies of countries to contend all around in the halal industry globally. There are several modes of internationalization; exporting is one of the first steps for internationalization with less capital needed. The study examines the influential factors of export performance amongst halal SMEs in Malaysia. Specifically, this study examines the positive and significant relationships amongst human capital, managerial capability, Halal Assurance Management System (HAMS), digital transformation, government support, and networking capability on halal SMEs' export performance toward SMEs' competitive advantage. In addition, this study will examine innovation capabilities as a moderator in the relationship between independence variables and competitive advantage. Competitive advantage is the most compelling perspective that drives the export performance of halal SMEs in Malaysia. A quantitative method will be used: an online questionnaire survey distributed through emails and face-to-face toward selected halal-certificated SMEs registered in JAKIM, MATRADE website and SME Corp Malaysia website. Nevertheless, whether the halal SMEs practice global business, they will still be the potential respondents. The data were examined and obtained using the statistical software Smart PLS. The analysis used is reliability, correlation, and regression analysis to meet the research objectives. This study contributes significantly to the theory by integrating Resource Based View (RBV) theory, Technology–Organization–Environment (TOE) framework and Networking theory. In addition, this research extends the RBV by extending a variable, the Halal Assurance Management System. This study also examines a moderating role of innovation capabilities in the framework and competitive advantage as a mediator. This research aims to analyze the factors that will impact the internationalization of halal SMEs.

Keywords: internationalization, halal SMEs, competitive advantage, export performance

Procedia PDF Downloads 74
2121 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 74
2120 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role

Authors: Sally A. Brown

Abstract:

Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.

Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role

Procedia PDF Downloads 97
2119 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 195
2118 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 110
2117 West African Islamic Civilization: Sokoto Caliphate and Science Education

Authors: Hassan Attahiru Gwandu

Abstract:

This study aims at surveying and analyzing the contribution of Sokoto scholars or Sokoto Caliphate in the development of science and technology in West Africa. Today, it is generally accepted that the 19th century Islamic revivalism in Hausaland was a very important revolution in the history of Hausa society and beyond. It is therefore, as a result of this movement or Jihad; the Hausaland (West Africa in general) witnessed several changes and transformations. These changes were in different sectors of life from politics, economy to social and religious aspect. It is these changes especially on religion that will be given considerations in this paper. The jihad resulted is the establishment of an Islamic state of Sokoto Caliphate, the revival Islam and development of learning and scholarship. During the existence of this Caliphate, a great deal of scholarship on Islamic laws were revived, written and documented by mostly, the three Jihad leaders; Usmanu Danfodiyo, his brother Abdullahi Fodiyo and his son Muhammad Bello. The trio had written more than one thousand books and made several verdicts on Islamic medicine. This study therefore, seeks to find out the contributions of these scholars or the Sokoto caliphate in the development of science in West Africa.

Keywords: Sokoto caliphate, scholarship, science and technology, West Africa

Procedia PDF Downloads 293