Search results for: classification techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8584

Search results for: classification techniques

604 Nature Manifestations: An Archetypal Analysis of Selected Nightwish Songs

Authors: Suzanne Strauss, Leandi Steenkamp

Abstract:

The Finnish symphonic metal band Nightwish is the brainchild of songwriter and lyricist TuomasHolopainen and the band recorded their first demonstration recording in 1996. The band has since produced nine full-length studio albums, the most recent being the 2020 album Human. :||: Nature., and has reached massive international success. The band is well known for songs about fantasy and escapism and employs many sonic, visual and branding tools and techniques to communicate these constructs to the audience. Among these, is the band’s creation of the so-called “Nightwish world and mythology” with a set of recurring characters and narratives which, in turn, creates a psychological anchor and safe space for Nightwish fans around the globe. Nature and the reverence of nature are central themes in Nightwish’s self-created mythology.Swiss psychologist Carl Jung’s theory of the collective unconscious identified a mysterious reservoir of psychological constructs common to all people, being derived from ancestral memory and experience, common to all humankind, and distinct from the individual’s personal unconscious. Furthermore, he defined archetypes as timeless collective patterns and images that springs forth from the collective unconscious. Archetypes can be actualized when they enter consciousness as images in interaction with the outside world. Archetypal patterns or images can manifest in different ways across world cultures, but follow common patterns, also known as archetypal themes and symbols. The Jungian approach to the psyche places great emphasis on nature, positing a direct link betweenthe concept of wholeness and responsible care for nature and the environment.In our proposed paper, we examine, by means of thematic content analysis, how Nightwish makes use of archetypal themes and symbols referring to nature and the environment in selected songs from their ninth full-length album Human. II Nature. Furthermore, we argue that the longing for and reverence of nature in selected Nightwish songs may serve as a type of “social intervention” and social critique on modern capitalist society. The type of social critique that the band offers is generally connoted intertextually and is not equally explicit in their songs. The band uses a unique combination of escapism, fantasy, and nature narratives to inspire a sense of wonder, enchantment, and magic in the listener. In this way, escapism, fantasy, and nature serve as postmodern frames of reference that aim to “re-enchant” the disenchanted and de-spiritualized. In this way, re-enchantment could also refer to spiritual and/or psychological healing and rebirth.

Keywords: archetypes, metal music, nature, Nightwish, social interventions

Procedia PDF Downloads 117
603 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst

Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra

Abstract:

Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.

Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery

Procedia PDF Downloads 269
602 Beyond Geometry: The Importance of Surface Properties in Space Syntax Research

Authors: Christoph Opperer

Abstract:

Space syntax is a theory and method for analyzing the spatial layout of buildings and urban environments to understand how they can influence patterns of human movement, social interaction, and behavior. While direct visibility is a key factor in space syntax research, important visual information such as light, color, texture, etc., are typically not considered, even though psychological studies have shown a strong correlation to the human perceptual experience within physical space – with light and color, for example, playing a crucial role in shaping the perception of spaciousness. Furthermore, these surface properties are often the visual features that are most salient and responsible for drawing attention to certain elements within the environment. This paper explores the potential of integrating these factors into general space syntax methods and visibility-based analysis of space, particularly for architectural spatial layouts. To this end, we use a combination of geometric (isovist) and topological (visibility graph) approaches together with image-based methods, allowing a comprehensive exploration of the relationship between spatial geometry, visual aesthetics, and human experience. Custom-coded ray-tracing techniques are employed to generate spherical panorama images, encoding three-dimensional spatial data in the form of two-dimensional images. These images are then processed through computer vision algorithms to generate saliency-maps, which serve as a visual representation of areas most likely to attract human attention based on their visual properties. The maps are subsequently used to weight the vertices of isovists and the visibility graph, placing greater emphasis on areas with high saliency. Compared to traditional methods, our weighted visibility analysis introduces an additional layer of information density by assigning different weights or importance levels to various aspects within the field of view. This extends general space syntax measures to provide a more nuanced understanding of visibility patterns that better reflect the dynamics of human attention and perception. Furthermore, by drawing parallels to traditional isovist and VGA analysis, our weighted approach emphasizes a crucial distinction, which has been pointed out by Ervin and Steinitz: the difference between what is possible to see and what is likely to be seen. Therefore, this paper emphasizes the importance of including surface properties in visibility-based analysis to gain deeper insights into how people interact with their surroundings and to establish a stronger connection with human attention and perception.

Keywords: space syntax, visibility analysis, isovist, visibility graph, visual features, human perception, saliency detection, raytracing, spherical images

Procedia PDF Downloads 81
601 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science

Authors: Nicola G. G. Cecca

Abstract:

In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.

Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™

Procedia PDF Downloads 273
600 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles

Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer

Abstract:

Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.

Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation

Procedia PDF Downloads 302
599 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures

Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar

Abstract:

In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.

Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization

Procedia PDF Downloads 214
598 Lightweight Sheet Molding Compound Composites by Coating Glass Fiber with Cellulose Nanocrystals

Authors: Amir Asadi, Karim Habib, Robert J. Moon, Kyriaki Kalaitzidou

Abstract:

There has been considerable interest in cellulose nanomaterials (CN) as polymer and polymer composites reinforcement due to their high specific modulus and strength, low density and toxicity, and accessible hydroxyl side groups that can be readily chemically modified. The focus of this study is making lightweight composites for better fuel efficiency and lower CO2 emission in auto industries with no compromise on mechanical performance using a scalable technique that can be easily integrated in sheet molding compound (SMC) manufacturing lines. Light weighting will be achieved by replacing part of the heavier components, i.e. glass fibers (GF), with a small amount of cellulose nanocrystals (CNC) in short GF/epoxy composites made using SMC. CNC will be introduced as coating of the GF rovings prior to their use in the SMC line. The employed coating method is similar to the fiber sizing technique commonly used and thus it can be easily scaled and integrated to industrial SMC lines. This will be an alternative route to the most techniques that involve dispersing CN in polymer matrix, in which the nanomaterials agglomeration limits the capability for scaling up in an industrial production. We have demonstrated that incorporating CNC as a coating on GF surface by immersing the GF in CNC aqueous suspensions, a simple and scalable technique, increases the interfacial shear strength (IFSS) by ~69% compared to the composites produced by uncoated GF, suggesting an enhancement of stress transfer across the GF/matrix interface. As a result of IFSS enhancement, incorporation of 0.17 wt% CNC in the composite results in increases of ~10% in both elastic modulus and tensile strength, and 40 % and 43 % in flexural modulus and strength respectively. We have also determined that dispersing 1.4 and 2 wt% CNC in the epoxy matrix of short GF/epoxy SMC composites by sonication allows removing 10 wt% GF with no penalty on tensile and flexural properties leading to 7.5% lighter composites. Although sonication is a scalable technique, it is not quite as simple and inexpensive as coating the GF by passing through an aqueous suspension of CNC. In this study, the above findings are integrated to 1) investigate the effect of CNC content on mechanical properties by passing the GF rovings through CNC aqueous suspension with various concentrations (0-5%) and 2) determine the optimum ratio of the added CNC to the removed GF to achieve the maximum possible weight reduction with no cost on mechanical performance of the SMC composites. The results of this study are of industrial relevance, providing a path toward producing high volume lightweight and mechanically enhanced SMC composites using cellulose nanomaterials.

Keywords: cellulose nanocrystals, light weight polymer-matrix composites, mechanical properties, sheet molding compound (SMC)

Procedia PDF Downloads 228
597 Fly ash Contamination in Groundwater and its Implications on Local Climate Change

Authors: Rajkumar Ghosh

Abstract:

Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.

Keywords: groundwater, climate, sustainable environment, fly ash contamination

Procedia PDF Downloads 94
596 Industrial Hemp Agronomy and Fibre Value Chain in Pakistan: Current Progress, Challenges, and Prospects

Authors: Saddam Hussain, Ghadeer Mohsen Albadrani

Abstract:

Pakistan is one of the most vulnerable countries to climate change. Being a country where 23% of the country’s GDP relies on agriculture, this is a serious cause of concern. Introducing industrial hemp in Pakistan can help build climate resilience in the agricultural sector of the country, as hemp has recently emerged as a sustainable, eco-friendly, resource-efficient, and climate-resilient crop globally. Hemp has the potential to absorb huge amounts of CO₂, nourish the soil, and be used to create various biodegradable and eco-friendly products. Hemp is twice as effective as trees at absorbing and locking up carbon, with 1 hectare (2.5 acres) of hemp reckoned to absorb 8 to 22 tonnes of CO₂ a year, more than any woodland. Along with its high carbon-sequestration ability, it produces higher biomass and can be successfully grown as a cover crop. Hemp can grow in almost all soil conditions and does not require pesticides. It has fast-growing qualities and needs only 120 days to be ready for harvest. Compared with cotton, hemp requires 50% less water to grow and can produce three times higher fiber yield with a lower ecological footprint. Recently, the Government of Pakistan has allowed the cultivation of industrial hemp for industrial and medicinal purposes, making it possible for hemp to be reinserted into the country’s economy. Pakistan’s agro-climatic and edaphic conditions are well-suitable to produce industrial hemp, and its cultivation can bring economic benefits to the country. Pakistan can enter global markets as a new exporter of hemp products. The production of hemp in Pakistan can be most exciting to the workforce, especially for farmers participating in hemp markets. The minimum production cost of hemp makes it affordable to small holding farmers, especially those who need their cropping system to be as highly sustainable as possible. Dr. Saddam Hussain is leading the first pilot project of Industrial Hemp in Pakistan. In the past three years, he has been able to recruit high-impact research grants on industrial hemp as Principal Investigator. He has already screened the non-toxic hemp genotypes, tested the adaptability of exotic material in various agroecological conditions, formulated the production agronomy, and successfully developed the complete value chain. He has developed prototypes (fabric, denim, knitwear) using hemp fibre in collaboration with industrial partners and has optimized the indigenous fibre processing techniques. In this lecture, Dr. Hussain will talk on hemp agronomy and its complete fibre value chain. He will discuss the current progress, and will highlight the major challenges and future research direction on hemp research.

Keywords: industrial hemp, agricultural sustainability, agronomic evaluation, hemp value chain

Procedia PDF Downloads 89
595 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals

Authors: A. Hamza, H. Kathyayini, N. Nagaraju

Abstract:

Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.

Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone

Procedia PDF Downloads 307
594 Effect of Tooth Bleaching Agents on Enamel Demineralisation

Authors: Najlaa Yousef Qusti, Steven J. Brookes, Paul A. Brunton

Abstract:

Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides.

Keywords: bleaching, carbamide peroxide, demineralisation, teeth whitening

Procedia PDF Downloads 130
593 Spatial Pattern of Environmental Noise Levels and Auditory Ailments in Abeokuta Metropolis, Southwestern Nigeria

Authors: Olusegun Oguntoke, Aramide Y. Tijani, Olayide R. Adetunji

Abstract:

Environmental noise has become a major threat to the quality of human life, and it is generally more severe in cities. This study assessed the level of environmental noise, mapped the spatial pattern at different times of the day and examined the association with morbidity of auditory ailments in Abeokuta metropolis. The entire metropolis was divided into 80 cells (areas) of 1000 m by 1000 m; out of which 33 were randomly selected for noise levels assessment. Portable noise meter (AR824) was used to measure noise level, and Global Positioning System (Garmin GPS-72H) was employed to take the coordinates of the sample sites for mapping. Risk map of the noise levels was produced using Kriging interpolation techniques based on the spatial spread of measured noise values across the study area. Data on cases of hearing impairments were collected from four major hospitals in the city. Data collected from field measurements and medical records were subjected to descriptive (frequency and percentage) and inferential (mean, ANOVA and correlation) statistics using SPSS (version 20.0). ArcMap 10.1 was employed for spatial analysis and mapping. Results showed mean noise levels range at morning (42.4 ± 4.14 – 88.2 ± 15.1 dBA), afternoon (45.0 ± 6.72– 86.4 ± 12.5 dBA) and evening (51.0 ± 6.55–84.4 ± 5.19 dBA) across the study area. The interpolated maps identified Kuto, Okelowo, Isale-Igbein, and Sapon as high noise risk areas. These are the central business district and nucleus of Abeokuta metropolis where commercial activities, high traffic volume, and clustered buildings exist. The monitored noise levels varied significantly among the sampled areas in the morning, afternoon and evening (p < 0.05). A significant correlation was found between diagnosed cases of auditory ailments and noise levels measured in the morning (r=0.39 at p < 0.05). Common auditory ailments found across the metropolis included impaired hearing (25.8%), tinnitus (16.4%) and otitis (15.0%). The most affected age groups were between 11-30 years while the male gender had more cases of hearing impairments (51.2%) than the females. The study revealed that environmental noise levels exceeded the recommended standards in the morning, afternoon and evening in 60.6%, 61% and 72.7% of the sampled areas respectively. Summarily, environmental noise in the study area is high and contributes to the morbidity of auditory ailments. Areas identified as hot spots of noise pollution should be avoided in the location of noise sensitive activities while environmental noise monitoring should be included as part of the mandate of the regulatory agencies in Nigeria.

Keywords: noise pollution, associative analysis, auditory impairment, urban, human exposure

Procedia PDF Downloads 149
592 Broad Survey of Fine Root Traits to Investigate the Root Economic Spectrum Hypothesis and Plant-Fire Dynamics Worldwide

Authors: Jacob Lewis Watts, Adam F. A. Pellegrini

Abstract:

Prairies, grasslands, and forests cover an expansive portion of the world’s surface and contribute significantly to Earth’s carbon cycle. The largest driver of carbon dynamics in some of these ecosystems is fire. As the global climate changes, most fire-dominated ecosystems will experience increased fire frequency and intensity, leading to increased carbon flux into the atmosphere and soil nutrient depletion. The plant communities associated with different fire regimes are important for reassimilation of carbon lost during fire and soil recovery. More frequent fires promote conservative plant functional traits aboveground; however, belowground fine root traits are poorly explored and arguably more important drivers of ecosystem function as the primary interface between the soil and plant. The root economic spectrum (RES) hypothesis describes single-dimensional covariation between important fine-root traits along a range of plant strategies from acquisitive to conservative – parallel to the well-established leaf economic spectrum (LES). However, because of the paucity of root trait data, the complex nature of the rhizosphere, and the phylogenetic conservatism of root traits, it is unknown whether the RES hypothesis accurately describes plant nutrient and water acquisition strategies. This project utilizesplants grown in common garden conditions in the Cambridge University Botanic Garden and a meta-analysis of long-term fire manipulation experiments to examine the belowground physiological traits of fire-adapted and non-fire-adapted herbaceous species to 1) test the RES hypothesis and 2) describe the effect of fire regimes on fine root functional traits – which in turn affect carbon and nutrient cycling. A suite of morphological, chemical, and biological root traits (e.g. root diameter, specific root length, percent N, percent mycorrhizal colonization, etc.) of 50 herbaceous species were measuredand tested for phylogenetic conservatism and RES dimensionality. Fire-adapted and non-fire-adapted plants traits were compared using phylogenetic PCA techniques. Preliminary evidence suggests that phylogenetic conservatism may weaken the single-dimensionality of the RES, suggesting that there may not be a single way that plants optimize nutrient and water acquisition and storage in the complex rhizosphere; additionally, fire-adapted species are expected to be more conservative than non-fire-adapted species, which may be indicative of slower carbon cycling with increasing fire frequency and intensity.

Keywords: climate change, fire regimes, root economic spectrum, fine roots

Procedia PDF Downloads 126
591 Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector

Authors: Dewan Ahsan

Abstract:

Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry.

Keywords: green energy, offshore, safety, Denmark

Procedia PDF Downloads 216
590 Petrology and Finite Strain of the Al Amar Region, Northern Ar-Rayn Terrane, Eastern Arabian Shield, Saudi Arabia

Authors: Lami Mohammed, Hussain J. Al Faifi, Abdel Aziz Al Bassam, Osama M. K. Kassem

Abstract:

The Neoproterozoic basement rocks of the Ar Rayn terrane have been identified as parts of the Eastern Arabian Shield. It focuses on the petrological and finite strain properties to display the tectonic setting of the Al Amar suture for high deformed volcanic and granitoids rocks. The volcanic rocks are classified into two major series: the eastern side cycle, which includes dacite, rhyodacite, rhyolite, and ignimbrites, and the western side cycle, which includes andesite and pyroclastics. Granitoids rocks also contain monzodiorite, tonalite, granodiorite, and alkali-feldspar granite. To evaluate the proportions of shear contributions in penetratively deformed rocks. Asymmetrical porphyroclast and sigmoidal structural markers along the suture's strike, namely the Al Amar, are expected to reveal strain factors. The Rf/phi and Fry techniques are used to characterize quartz and feldspar porphyroclast, biotite, and hornblende grains in Abt schist, high deformed volcanic rock, and granitoids. The findings exposed that these rocks had experienced shape flattening, finite strain accumulation, and overall volume loss. The magnitude of the strain appears to increase across the nappe contacts with neighboring lithologies. Subhorizontal foliation likely developed in tandem with thrusting and nappe stacking, almost parallel to tectonic contacts. The ductile strain accumulation that occurred during thrusting along the Al Amar suture mostly includes a considerable pure shear component. Progressive thrusting by overlaid transpression and oblique convergence is shown by stacked nappes and diagonal stretching lineations along the thrust axes. The subhorizontal lineation might be the result of the suture's most recent activity. The current study's findings contradict the widely accepted model that links orogen-scale structures in the Arabian Shield to oblique convergence with dominant simple shear deformation. A significant pure shear component/crustal thickening increment should have played a significant role in the evolution of the suture and thus in the Shield's overall deformation history. This foliation was primarily generated by thrusting nappes together, showing that nappe stacking was linked to substantial vertical shortening induced by the active Al Amar suture on a massive scale.

Keywords: petrology, finite strain analysis, al amar region, ar-rayn terrane, Arabian shield

Procedia PDF Downloads 124
589 Buddhist Cognitive Behavioral Therapy to Address Depression Among Elderly Population: Multi-cultural Model of Buddhist Based Cognitive Behavioral Therapy to Address Depression Among Elderly Population

Authors: Ashoke Priyadarshana Premananda

Abstract:

As per the suggestions of previously conducted research in Counseling Psychology, the necessity of forming culture- friendly approaches has been strongly emphasized by a number of scholars in the field. In response to that, Multicultural-model of Buddhist Based Cognitive Behavioral Therapy (MMBCBT) has been formed as a culture-friendly therapeutic approach to address psychological disturbances (depression) in late adulthood. Elderly population in the world is on the rise by leaps and bounds, and forming a culture-based therapeutic model which is blended with Buddhist teachings has been the major objective of the study. Buddhist teachings and cultural applications, which were mapped onto Cognitive Behavioral Therapy (CBT) in the West, ultimately resulted in MMBCBT. Therefore, MMBCBT is a blend of cultural therapeutic techniques and the essence of certain Buddhist teachings extracted from five crucial suttas, which include CBT principles. In the process of mapping, MeghiyaSutta, GirimānandaSutta, SallekhaSutta, DvedhāvitakkaSutta, and Vitakka- SaṇṭhānaSutta have been taken into consideration mainly because of their cognitive behavioral content. The practical components of Vitakka- Saṇṭhānasutta (Aññanimittapabbaṃ) and Sallekhasutta (SallekhaPariyāya and CittuppādaPariyāya) have been used in the model while mindfulness of breathing was also carried out with the participants. Basically, multi-cultural therapeutic approaches of MMBCBT aim at modifying behavior (behavioral modification), whereas the rest is centered to the cognitive restructuring process. Therefore, MMBCBT is endowed with Behavioral Therapy (BT) and Cognitive Therapy(CT). In order to find out the validation of MMBCBT as a newly formed approach, it was then followed by mixed research (quantitative and qualitative research) with a sample selected from the elderly population following the purposive sampling technique. 40 individuals were selected from three elderly homes as per the purposive sampling technique. Elderly people identified to be depressed via Geriatric Depression Scale underwent MMBCBT for two weeks continuously while action research was being conducted simultaneously. Additionally, a Focus Group interview was carried out to support the action research. As per the research findings, people who identified depressed prior to the exposure to MMBCBT were found to be showing positive changes after they were exposed to the model. “Paired Sample t test” showed that the Multicultural Model of Buddhist based Cognitive Behavioral Therapy reduced depression of elderly people (The mean value (x̄) of the sample (level of depression) before the model was 10.7 whereas the mean value after the model was 7.5.). Most importantly, MMBCBT has been found to be effectively used with people from all walks of life despite religious diversities.

Keywords: buddhist psychotherapy, cognitive behavioral therapy in buddhism, counseling in cultural context, gerontology, and buddhism

Procedia PDF Downloads 112
588 Kinematical Analysis of Tai Chi Chuan Players during Gait and Balance Test and Implication in Rehabilitation Exercise

Authors: Bijad Alqahtani, Graham Arnold, Weijie Wang

Abstract:

Background—Tai Chi Chuan (TCC) is a type of traditional Chinese martial art and is considered a benefiting physical fitness. Advanced techniques of motion analysis have been routinely used in the clinical assessment. However, so far, little research has been done on the biomechanical assessment of TCC players in terms of gait and balance using motion analysis. Objectives—The aim of this study was to investigate whether TCC improves the lower limb conditions and balance ability using the state of the art motion analysis technologies, i.e. motion capture system, electromyography and force platform. Methods—Twenty TCC (9 male, 11 female) with age between (42-77) years old and weight (56.2-119 Kg), and eighteen Non-TCC participants (7 male, 11 female), weight (50-110 Kg) with age (43- 78) years old at the matched age as a control group were recruited in this study. Their gait and balance were collected using Vicon Nexus® to obtain the gait parameters, and kinematic parameters of hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 5 trials of single-leg balance for the dominant side. Also, the participants performed 3 trials of four square step balance and 10 trials of walking. From the recorded trials, three good ones were analyzed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g. walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Result— The temporal-spatial variables of TCC subjects were compared with the Non-TCC subjects, it was found that there was a significant difference (p < 0.05) between the groups. Moreover, it was observed that participants of TCC have significant differences in ankle, hip, and knee joints’ kinematics in the sagittal, coronal, and transverse planes such as ankle angle (19.90±19.54 deg) for TCC while (15.34±6.50 deg) for Non-TCC, and knee angle (14.96±6.40 deg) for TCC while (17.63±5.79 deg) for Non-TCC in the transverse plane. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g. maintaining single leg stance time in the TCC participants showed longer duration (20.85±10.53 s) in compared to Non-TCC people group (13.39±8.78 s). While the result showed that there was no significant difference between groups in the four square step balance. Conclusion—Our result showed that there are significant differences between Tai Chi Chuan and Non-Tai Chi Chuan participants in the various aspects of gait analysis and balance test, as a consequence of these findings some of biomechanical parameters such as joints kinematics, gait parameters and single leg stance balance test, the Tai Chi Chuan could improve the lower limb conditions and could reduce a risk of fall for the elderly with ageing.

Keywords: gait analysis, kinematics, single leg stance, Tai Chi Chuan

Procedia PDF Downloads 131
587 Self-Care and Emotional Wellbeing of Nurses Using Playback Theatre and Expressive Arts

Authors: Radhika Jain

Abstract:

The nursing community in India face unique challenges ranging from lack of adequate career progression, low social status attached to the profession, poor nurse-to-patient ratio leading to heavy workload resulting in stress and burnout, lack of general recognition and the responsibility of often having to deal with the ire of the patients and their families. This study explores how a combination of Playback Theatre and Expressive Arts could be used as a very powerful tool to understand the concerns, and consequently as a self-care tool to bring about the sense of well-being and emotional awareness for the nurses. For the purpose of this study, Playback Theatre was used as an entry tool to understand the thoughts, feelings and concerns. Playback theatre is a unique improvisational form of theatre developed by Jonathan Fox and Jo Salas in 1975, in which audience share their own stories from their lives and the performers play them back through a range of improv techniques such as metaphor, poetry, music and movement. Playback Theatre helped in first warming them up to the idea of sharing and then gave them the confidence of a safe space to collectively go deeper into their emotional experiences. As the next step, structured sessions of Expressive Arts were conducted with the same set of nurses, for them to work on the issues and concerns they have (and which they shared during the Playback performance). These sessions were to enable longer engagements as many of the concerns expressed were related to perceptions and beliefs that have been ingrained over a period of time and hence it needs a longer engagement to be worked on in detail. The Expressive Art sessions helped in this regard. Expressive arts therapy combines psychology and the creative process to promote emotional growth and healing. The study was conducted at two places: one a geriatric centre and the other, a palliative care centre. The study revealed that concerns and challenges would not be identical across the nursing community or across similar types of health care organizations but would be specific to each organization or centre as the circumstances and set-up at each place would be different. At the geriatric centre, stress and burnout emerged as the main concerns while at the palliative care centre, the main concern that came up was around the difficulty the nurses faced in expressing emotions and in communicating their feelings. The objective analysis of the results of the study indicated how longer-term engagements using Expressive Arts as the modality helped the nurses have better awareness of their emotions and helped them develop tools of self-care tools while also tapping into their emotions to express and experience. The process of eliciting the main concerns from the nurses using a Playback Theatre performance and then following that with subsequent sessions of expressive arts helped the nurses in the way nurses approached their job and the reduced level of overwhelm that they felt.

Keywords: palliative care, nurses, self-care, expressive arts, playback theatre

Procedia PDF Downloads 123
586 Debunking Sexual Myths in Bangladesh through an Intervention on the Internet

Authors: E. Rommes, Els Toonen, Rahil Roodsaz, Suborna Camellia, Farhana Alam, Saad Khan, Jhalok Ranjon Talukder, Tanveer Hassan, Syeda Farjana Ahmed, Sabina Faiz Rashid

Abstract:

In Bangladesh, a country in which adults (both parents and teachers) find it particularly hard to speak with youth about sexuality, adolescents seem to struggle with various insecurities about their sexual feelings, thoughts, behavior and physical characteristics. On the basis of a large number of interviews and focus groups with rural and urban Bangla adolescent girls and boys of lower and middle class as part of the large-scale three-year project ‘Breaking the Shame’, we have identified ten sexual themes or ‘myths’ that youth struggle with most. These encompass amongst others beliefs and insecurities on masturbation, discharge, same-sex behavior and feelings, the effects of watching porn and gender norms. We argue that the Internet is a particularly suitable medium to ‘debunk’ those myths, as youth can consult it anonymously and privately and so avoid social shame. Moreover, amongst the myths, we have identified two kinds which may need different debunking techniques. One kind of myth concerns scientifically uncontested, generally biological related information, such as the effects of having sex with a pregnant woman, questions on the effects of a penile or vaginal discharge or questions on the effects of masturbation. The second kind of myths concerns more diverse information sources and deals with e.g. religious or culturally specific norms, such as on the meaning and existence of homosexuality or gender appropriate norms of behavior in Bangladesh. For addressing both kinds of myths, expert information including a wealth of references to information resources needs to be provided, which the Internet is very suitable for. For the second kind of myths, adolescents also need to learn how to deal with sometimes conflicting norms and information sources, and they need to develop and reflect on their own opinions as part of their identity formation. On the basis of a literature review, we thus distinguish general information needs from identity formation needs, which includes the need to be able to relate information and opinions to one’s own opinions and situation. Hence, we argue that youth not only need abstract expert information to be able to debunk sexual myths, but also the option to discuss this information with other adolescents and compare their own situation and opinions with other peers, who in that way serve as ‘warm experts’ for each other. In this paper, we will describe the outcomes of our qualitative study above. In addition, we will present our findings of an intervention by presenting youth with general, uncontested information on the Internet with additional peer discussion options to compare the debunking effects on different kinds of myths.

Keywords: peer discussion, intervention, sexual myths, shame

Procedia PDF Downloads 224
585 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes

Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter

Abstract:

Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.

Keywords: dispersal, evidence, propeller, UAV

Procedia PDF Downloads 167
584 Development and Psychometric Properties of the Dutch Contextual Assessment of Social Skills: A Blinded Observational Outcome Measure of Social Skills for Adolescents with Autism Spectrum Disorder

Authors: Sakinah Idris, Femke Ten Hoeve, Kirstin Greaves-Lord

Abstract:

Background: Social skills interventions are considered to be efficacious if social skills are improved as a result of an intervention. Nevertheless, the objective assessment of social skills is hindered by a lack of sensitive and validated measures. To measure the change in social skills after an intervention, questionnaires reported by parents, clinicians and/or teachers are commonly used. Observations are the most ecologically valid method of assessing improvements in social skills after an intervention. For this purpose, The Program for the Educational and Enrichment of Relational Skills (PEERS) was developed for adolescents, in order to teach them the age-appropriate skills needed to participate in society. It is an evidence-based intervention for adolescents with ASD that taught ecologically valid social skills techniques. Objectives: The current study aims to describe the development and psychometric evaluation of the Dutch Contextual Assessment of Social Skills (CASS), an observational outcome measure of social skills for adolescents with Autism Spectrum Disorder (ASD). Methods: 64 adolescents (M = 14.68, SD = 1.41, 71% boys) with ASD performed the CASS before and after a social skills intervention (i.e. PEERS or the active control condition). Each adolescent completed a 3-minute conversation with a confederate. The conversation was prompt as a natural introduction between two-unfamiliar, similar ages, opposite-sex peers who meet for the first time. The adolescent and the confederate completed a brief questionnaire about the conversation (Conversation Rating Scale). Results: Results indicated sufficient psychometric properties. The Dutch CASS has a high level of internal consistency (Cronbach's α coefficients = 0.84). Data supported the convergent validity (i.e., significant correlated with the Social Skills Improvement System (SSiS). The Dutch CASS did not significantly correlate with the autistic mannerism subscale from Social Responsiveness Scale (SRS), thus proved the divergent validity. Based on scorings made by raters who were kept blind to the time points, reliable change index was computed to assess the change in social skills. With regard to the content validity, only the learning objectives of the first two meetings of PEERS about conversational skills relatively matched with rating domains of the CASS. Due to this underrepresentation, we found an existing observational measure (TOPICC) that covers some of the other learning objectives of PEERS. TOPICC covers 22% of the learning objectives of PEERS about conversational skills, meanwhile, CASS is 45%. Unfortunately, 33% of the learning objectives of PEERS was not covered by CASS or TOPICC. Conclusion: Recommendations are made to improve the psychometric properties and content validity of the Dutch CASS.

Keywords: autism spectrum disorder, observational, PEERS, social skills

Procedia PDF Downloads 162
583 Elimination of Mother to Child Transmission of HIV/AIDS: A Study of the Knowledge, Attitudes and Perceptions of Healthcare Workers in Abuja Nigeria

Authors: Ezinne K. Okoro, Takahiko Katoh, Yoko Kawamura, Stanley C. Meribe

Abstract:

HIV infection in children is largely as a result of vertical transmission (mother to child transmission [MTCT]). Thus, elimination of mother to child transmission of HIV/AIDS is critical in eliminating HIV infection in children. In Nigeria, drawbacks such as; limited pediatric screening, limited human capital, insufficient advocacy and poor understanding of ART guidelines, have impacted efforts at combating the disease, even as treatment services are free. Prevention of Mother to Child Transmission (PMTCT) program relies on health workers who not only counsel pregnant women on first contact but can competently provide HIV-positive pregnant women with accurate information about the PMTCT program such as feeding techniques and drug adherence. In developing regions like Nigeria where health care delivery faces a lot of drawbacks, it becomes paramount to address these issues of poor PMTCT coverage by conducting a baseline assessment of the knowledge, practices and perceptions related to HIV prevention amongst healthcare workers in Nigeria. A descriptive cross-sectional study was conducted amongst 250 health workers currently employed in health facilities in Abuja, Nigeria where PMTCT services were offered with the capacity to carry out early infant diagnosis testing (EID). Data was collected using a self-administered, pretested, structured questionnaire. This study showed that the knowledge of PMTCT of HIV was poor (30%) among healthcare workers who offer this service day-to-day to pregnant women. When PMTCT practices were analyzed in keeping with National PMTCT guidelines, over 61% of the respondents reported observing standard practices and the majority (58%) had good attitudes towards caring for patients with HIV/AIDS. Although 61% of the respondents reported being satisfied with the quality of service being rendered, 63% reported not being satisfied with their level of knowledge. Predictors of good knowledge were job designation and level of educational attainment. Health workers who were more satisfied with their working conditions and those who had worked for a longer time in the PMTCT service were more likely to observe standard PMTCT practices. With over 62% of the healthcare workers suggesting that more training would improve the quality of service being rendered, this is a strong pointer to stakeholders to consider a ‘healthcare worker-oriented approach’ when planning and conducting PMTCT training for healthcare workers. This in turn will increase pediatric ARV coverage, the knowledge and effectiveness of the healthcare workers in carrying out appropriate PMTCT interventions and culminating in the reduction/elimination of HIV transmission to newborns.

Keywords: attitudes, HIV/AIDS, healthcare workers, knowledge, mother to child transmission, Nigeria, perceptions

Procedia PDF Downloads 210
582 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 101
581 Micro-injection Molding Process Applications: A Study on Microstructure and Mechanical Properties of Biomedical PLA/Mg Composites

Authors: Ying-Ting Huang, Fei-Yi Hung

Abstract:

Biodegradable implantable medical devices have merged as a widely researched field in recent years. Due to their degradable properties, these materials eliminate the need for secondary surgeries to remove implants, thus offering significant clinical value. Polylactic acid (PLA), as a biodegradable polymer material, has been extensively applied in the medical field due to its excellent biocompatibility as well as the non-toxic and metabolizable nature of its degradation product. Additionally, PLA exhibits high processability, allowing it to be manufactured into various forms through different fabrication techniques to meet diverse medical requirements. However, PLA has shortcomings, including limited mechanical properties, low hydrophilicity, and an acidic environment generated during its degradation process, which need to be overcome by material modifications. This study utilizes magnesium (Mg) powder as an additive phase to improve the properties of PLA-based composite materials. Chemical conversion treatment was employed to form a phosphate coating on the Mg powder surface to improve its interfacial bonding with the PLA matrix. The phosphate-treated Mg powder was mixed with PLA pellets, and test specimens were successfully fabricated using a self-designed micro-injection molding machine. This fabrication process demonstrated excellent stability and efficiency, confirming the feasibility of this approach in PLA-based composite material production. The results indicated that the coated Mg powder could be uniformly dispersed within the PLA matrix and acted as nucleation sites, significantly enhancing the crystallinity of PLA. Further annealing treatment revealed substantial improvements in the thermal stability and mechanical properties of the composite material, enhancing its application potential. Through the immersion test, the degradation mechanism of the composite material was summarized. In the initial stage, degradation was dominated by Mg, and the degradation products neutralized the acidic environment created by PLA degradation, thereby mitigating potential discomfort after implantation. Subsequently, the solution infiltrated the internal structure of the material, promoting hydrolysis of the PLA matrix and accelerating the overall degradation process, thus avoiding an excessively long degradation cycle. The optimized PLA/Mg composite material demonstrated excellent mechanical properties and controlled degradation behavior, showing its potential as a biodegradable implantable medical device. These findings provide a valuable reference for the future development of PLA-based composites and broaden their application prospects in the biomedical field.

Keywords: biodegradable, composites, magnesium powder, metal injection molding, polylactic acid

Procedia PDF Downloads 0
580 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid

Authors: Benjamin Blat Belmonte, Stephan Rinderknecht

Abstract:

The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.

Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market

Procedia PDF Downloads 81
579 Assessment of N₂ Fixation and Water-Use Efficiency in a Soybean-Sorghum Rotation System

Authors: Mmatladi D. Mnguni, Mustapha Mohammed, George Y. Mahama, Alhassan L. Abdulai, Felix D. Dakora

Abstract:

Industrial-based nitrogen (N) fertilizers are justifiably credited for the current state of food production across the globe, but their continued use is not sustainable and has an adverse effect on the environment. The search for greener and sustainable technologies has led to an increase in exploiting biological systems such as legumes and organic amendments for plant growth promotion in cropping systems. Although the benefits of legume rotation with cereal crops have been documented, the full benefits of soybean-sorghum rotation systems have not been properly evaluated in Africa. This study explored the benefits of soybean-sorghum rotation through assessing N₂ fixation and water-use efficiency of soybean in rotation with sorghum with and without organic and inorganic amendments. The field trials were conducted from 2017 to 2020. Sorghum was grown on plots previously cultivated to soybean and vice versa. The succeeding sorghum crop received fertilizer amendments [organic fertilizer (5 tons/ha as poultry litter, OF); inorganic fertilizer (80N-60P-60K) IF; organic + inorganic fertilizer (OF+IF); half organic + inorganic fertilizer (HIF+OF); organic + half inorganic fertilizer (OF+HIF); half organic + half inorganic (HOF+HIF) and control] and was arranged in a randomized complete block design. The soybean crop succeeding fertilized sorghum received a blanket application of triple superphosphate at 26 kg P ha⁻¹. Nitrogen fixation and water-use efficiency were respectively assessed at the flowering stage using the ¹⁵N and ¹³C natural abundance techniques. The results showed that the shoot dry matter of soybean plants supplied with HOF+HIF was much higher (43.20 g plant-1), followed by OF+HIF (36.45 g plant⁻¹), and HOF+IF (33.50 g plant⁻¹). Shoot N concentration ranged from 1.60 to 1.66%, and total N content from 339 to 691 mg N plant⁻¹. The δ¹⁵N values of soybean shoots ranged from -1.17‰ to -0.64‰, with plants growing on plots previously treated to HOF+HIF exhibiting much higher δ¹⁵N values, and hence lower percent N derived from N₂ fixation (%Ndfa). Shoot %Ndfa values varied from 70 to 82%. The high %Ndfa values obtained in this study suggest that the previous year’s organic and inorganic fertilizer amendments to sorghum did not inhibit N₂ fixation in the following soybean crop. The amount of N-fixed by soybean ranged from 106 to 197 kg N ha⁻¹. The treatments showed marked variations in carbon (C) content, with HOF+HIF treatment recording the highest C content. Although water-use efficiency varied from -29.32‰ to -27.85‰, shoot water-use efficiency, C concentration, and C:N ratio were not altered by previous fertilizer application to sorghum. This study provides strong evidence that previous HOF+HIF sorghum residues can enhance N nutrition and water-use efficiency in nodulated soybean.

Keywords: ¹³C and ¹⁵N natural abundance, N-fixed, organic and inorganic fertilizer amendments, shoot %Ndfa

Procedia PDF Downloads 174
578 Complementing Assessment Processes with Standardized Tests: A Work in Progress

Authors: Amparo Camacho

Abstract:

ABET accredited programs must assess the development of student learning outcomes (SOs) in engineering programs. Different institutions implement different strategies for this assessment, and they are usually designed “in house.” This paper presents a proposal for including standardized tests to complement the ABET assessment model in an engineering college made up of six distinct engineering programs. The engineering college formulated a model of quality assurance in education to be implemented throughout the six engineering programs to regularly assess and evaluate the achievement of SOs in each program offered. The model uses diverse techniques and sources of data to assess student performance and to implement actions of improvement based on the results of this assessment. The model is called “Assessment Process Model” and it includes SOs A through K, as defined by ABET. SOs can be divided into two categories: “hard skills” and “professional skills” (soft skills). The first includes abilities, such as: applying knowledge of mathematics, science, and engineering and designing and conducting experiments, as well as analyzing and interpreting data. The second category, “professional skills”, includes communicating effectively, and understanding professional and ethnical responsibility. Within the Assessment Process Model, various tools were used to assess SOs, related to both “hard” as well as “soft” skills. The assessment tools designed included: rubrics, surveys, questionnaires, and portfolios. In addition to these instruments, the Engineering College decided to use tools that systematically gather consistent quantitative data. For this reason, an in-house exam was designed and implemented, based on the curriculum of each program. Even though this exam was administered during various academic periods, it is not currently considered standardized. In 2017, the Engineering College included three standardized tests: one to assess mathematical and scientific reasoning and two more to assess reading and writing abilities. With these exams, the college hopes to obtain complementary information that can help better measure the development of both hard and soft skills of students in the different engineering programs. In the first semester of 2017, the three exams were given to three sample groups of students from the six different engineering programs. Students in the sample groups were either from the first, fifth, and tenth semester cohorts. At the time of submission of this paper, the engineering college has descriptive statistical data and is working with various statisticians to have a more in-depth and detailed analysis of the sample group of students’ achievement on the three exams. The overall objective of including standardized exams in the assessment model is to identify more precisely the least developed SOs in order to define and implement educational strategies necessary for students to achieve them in each engineering program.

Keywords: assessment, hard skills, soft skills, standardized tests

Procedia PDF Downloads 291
577 Oxalate Method for Assessing the Electrochemical Surface Area for Ni-Based Nanoelectrodes Used in Formaldehyde Sensing Applications

Authors: S. Trafela, X. Xua, K. Zuzek Rozmana

Abstract:

In this study, we used an accurate and precise method to measure the electrochemically active surface areas (Aecsa) of nickel electrodes. Calculated Aecsa is really important for the evaluation of an electro-catalyst’s activity in electrochemical reaction of different organic compounds. The method involves the electrochemical formation of Ni(OH)₂ and NiOOH in the presence of adsorbed oxalate in alkaline media. The studies were carried out using cyclic voltammetry with polycrystalline nickel as a reference material and electrodeposited nickel nanowires, homogeneous and heterogeneous nickel films. From cyclic voltammograms, the charge (Q) values for the formation of Ni(OH)₂ and NiOOH surface oxides were calculated under various conditions. At sufficiently fast potential scan rates (200 mV s⁻¹), the adsorbed oxalate limits the growth of the surface hydroxides to a monolayer. Although the Ni(OH)₂/NiOOH oxidation peak overlaps with the oxygen evolution reaction, in the reverse scan, the NiOOH/ Ni(OH)₂ reduction peak is well-separated from other electrochemical processes and can be easily integrated. The values of these integrals were used to correlate experimentally measured charge density with an electrochemically active surface layer. The Aecsa of the nickel nanowires, homogeneous and heterogeneous nickel films were calculated to be Aecsa-NiNWs = 4.2066 ± 0.0472 cm², Aecsa-homNi = 1.7175 ± 0.0503 cm² and Aecsa-hetNi = 2.1862 ± 0.0154 cm². These valuable results were expanded and used in electrochemical studies of formaldehyde oxidation. As mentioned nickel nanowires, heterogeneous and homogeneous nickel films were used as simple and efficient sensor for formaldehyde detection. For this purpose, electrodeposited nickel electrodes were modified in 0.1 mol L⁻¹ solution of KOH in order to expect electrochemical activity towards formaldehyde. The investigation of the electrochemical behavior of formaldehyde oxidation in 0.1 mol L⁻¹ NaOH solution at the surface of modified nickel nanowires, homogeneous and heterogeneous nickel films were carried out by means of electrochemical techniques such as cyclic voltammetric and chronoamperometric methods. From investigations of effect of different formaldehyde concentrations (from 0.001 to 0.1 mol L⁻¹) on electrochemical signal - current we provided catalysis mechanism of formaldehyde oxidation, detection limit and sensitivity of nickel electrodes. The results indicated that nickel electrodes participate directly in the electrocatalytic oxidation of formaldehyde. In the overall reaction, formaldehyde in alkaline aqueous solution exists predominantly in form of CH₂(OH)O⁻, which is oxidized to CH₂(O)O⁻. Taking into account the determined (Aecsa) values we have been able to calculate the sensitivities: 7 mA mol L⁻¹ cm⁻² for nickel nanowires, 3.5 mA mol L⁻¹ cm⁻² for heterogeneous nickel film and 2 mA mol L⁻¹ cm⁻² for heterogeneous nickel film. The detection limit was 0.2 mM for nickel nanowires, 0.5 mM for porous Ni film and 0.8 mM for homogeneous Ni film. All of these results make nickel electrodes capable for further applications.

Keywords: electrochemically active surface areas, nickel electrodes, formaldehyde, electrocatalytic oxidation

Procedia PDF Downloads 164
576 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 135
575 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 380