Search results for: water/glycol
878 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 183877 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications
Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo
Abstract:
Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment
Procedia PDF Downloads 111876 Solid Waste Generation, Composition and Potentiality of Waste to Resource Recovery in Narayanganj City Corporation
Authors: Md. Jisan Ahmed, M. A. Taher
Abstract:
One of the cities in Bangladesh that is developing the fastest is Narayanganj City Corporation. In 2011, the municipality of Narayanganj was transformed into a city corporation, with 27 wards combining Kadamrasul Municipality, Siddhirganj Municipality, and Narayanganj Town. It is also one of Bangladesh's most important industrial centers in Bangladesh. Narayanganj City Corporation (NCC), which has had high development growth, is also generating more solid waste on a high per-capita basis. Because of the increasing rate of population expansion, business activity, industrial development, and fast urbanization, NCC is today creating more waste than ever before. The enormous amount of solid garbage produced in NCC is currently causing air pollution, soil contamination, water pollution, drainage system blockages, and an unpleasant urban environment. The study aimed to find out the amount of solid waste produced per day in NCC by exploring the waste composition and potentiality of resource recovery from the produced solid waste. This study considered household surveys, polythene bag surveys, questionnaire surveys in commercial and industrial sectors, KIIs, FGDs, and lab tests to identify the total amount of waste generated in NCC with waste composition and potentiality for energy recovery from the generated waste. This study has explored that NCC is producing about 922 tons of solid waste per day from households, commercial activities, and industrial sectors where the existing waste collection rate by NCC authority is only about 50% of total generated waste. This study has also explored that about 75% of daily-produced solid waste is perishable with comparatively high moisture content whereas 18 % and 7% are non-perishable and hazardous. It is also explored that there is no resource recovery plant for solid waste management in NCC. On the other hand, this study has explored that the calorific value of the produced solid waste favors resource recovery like waste to electricity. The generated solid waste composition is also in favor of waste-to-biogas, and waste-to-compost fertilizer production. This study has advocated that initiatives need to develop a solid waste management plant in NCC for resource recovery from solid waste. This research may provide a quick overview of the rate of solid waste generation, its composition, and the potential for resource recovery from solid waste in Bangladesh's metropolitan regions. It can also provide information and knowledge to other trash departments in different cities and municipalities in Bangladesh.Keywords: solid waste, waste composition, waste management, resource recovery from solid waste
Procedia PDF Downloads 20875 Yield Loss Estimation Using Multiple Drought Severity Indices
Authors: Sara Tokhi Arab, Rozo Noguchi, Tofeal Ahamed
Abstract:
Drought is a natural disaster that occurs in a region due to a lack of precipitation and high temperatures over a continuous period or in a single season as a consequence of climate change. Precipitation deficits and prolonged high temperatures mostly affect the agricultural sector, water resources, socioeconomics, and the environment. Consequently, it causes agricultural product loss, food shortage, famines, migration, and natural resources degradation in a region. Agriculture is the first sector affected by drought. Therefore, it is important to develop an agricultural drought risk and loss assessment to mitigate the drought impact in the agriculture sector. In this context, the main purpose of this study was to assess yield loss using composite drought indices in the drought-affected vineyards. In this study, the CDI was developed for the years 2016 to 2020 by comprising five indices: the vegetation condition index (VCI), temperature condition index (TCI), deviation of NDVI from the long-term mean (NDVI DEV), normalized difference moisture index (NDMI) and precipitation condition index (PCI). Moreover, the quantitative principal component analysis (PCA) approach was used to assign a weight for each input parameter, and then the weights of all the indices were combined into one composite drought index. Finally, Bayesian regularized artificial neural networks (BRANNs) were used to evaluate the yield variation in each affected vineyard. The composite drought index result indicated the moderate to severe droughts were observed across the Kabul Province during 2016 and 2018. Moreover, the results showed that there was no vineyard in extreme drought conditions. Therefore, we only considered the severe and moderated condition. According to the BRANNs results R=0.87 and R=0.94 in severe drought conditions for the years of 2016 and 2018 and the R= 0.85 and R=0.91 in moderate drought conditions for the years of 2016 and 2018, respectively. In the Kabul Province within the two years drought periods, there was a significate deficit in the vineyards. According to the findings, 2018 had the highest rate of loss almost -7 ton/ha. However, in 2016 the loss rates were about – 1.2 ton/ha. This research will support stakeholders to identify drought affect vineyards and support farmers during severe drought.Keywords: grapes, composite drought index, yield loss, satellite remote sensing
Procedia PDF Downloads 157874 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser
Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt
Abstract:
This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet
Procedia PDF Downloads 214873 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 211872 Characterization of Kevlar 29 for Multifunction Applications
Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia
Abstract:
Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.
Procedia PDF Downloads 80871 Redefining Lesbian Representation: The Evolution of Queer Female Desire in the Films of Céline Sciamma
Authors: Athira Sanjeev
Abstract:
The portrayal of lesbianism in cinema has undergone significant transformations. This study explores the evolving portrayal of lesbianism in the films of French director Céline Sciamma, focusing on how her works have redefined the representation of queer women in contemporary cinema. Through an analysis of Water Lilies (2007), Tomboy (2011), and Portrait of a Lady on Fire (2019), the study investigates the ways in which Sciamma’s films diverge from traditional depictions of lesbianism in film, which often relied on either fetishization or tragedy. Instead, Sciamma adopts a quiet, minimalist style that foregrounds emotional intimacy, offering a more nuanced and authentic portrayal of lesbian relationships. Through a comparative analysis of these films, this research explores the thematic and stylistic progression of Sciamma’s portrayal of lesbianism, highlighting her commitment to centering queer female experiences. The research highlights Sciamma's commitment to focusing on the complexities of desire, identity formation, and the female gaze, particularly through her use of visual storytelling, character development, and narrative silence. Her films emphasize the fluidity of gender and sexuality, portraying lesbianism not as a fixed identity but as part of a broader spectrum of human desire. Sciamma’s nuanced approach resists the traditional marginalization of lesbian characters, allowing them to exist as individuals rather than as plot devices or objects of spectacle. This study draws from queer theory and feminist film criticism to examine how Sciamma challenges conventional heteronormative narratives, prioritizes the female gaze, and subverts traditional cinematic representations of lesbian desire. It also explores how her work contributes to a broader conversation on the representation of queerness in contemporary French cinema, challenging heteronormative paradigms and offering new possibilities for depicting female relationships on screen. By tracing the evolution of her films, this research contributes to broader discussions on LGBTQ+ visibility in cinema and the cultural significance of lesbian representation in contemporary cinema.Keywords: female gaze, feminist film criticism, lesbianism in cinema, queer theory
Procedia PDF Downloads 18870 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications
Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski
Abstract:
Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods
Procedia PDF Downloads 432869 Creative Mathematically Modelling Videos Developed by Engineering Students
Authors: Esther Cabezas-Rivas
Abstract:
Ordinary differential equations (ODE) are a fundamental part of the curriculum for most engineering degrees, and students typically have difficulties in the subsequent abstract mathematical calculations. To enhance their motivation and profit that they are digital natives, we propose a teamwork project that includes the creation of a video. It should explain how to model mathematically a real-world problem transforming it into an ODE, which should then be solved using the tools learned in the lectures. This idea was indeed implemented with first-year students of a BSc in Engineering and Management during the period of online learning caused by the outbreak of COVID-19 in Spain. Each group of 4 students was assigned a different topic: model a hot water heater, search for the shortest path, design the quickest route for delivery, cooling a computer chip, the shape of the hanging cables of the Golden Gate, detecting land mines, rocket trajectories, etc. These topics should be worked out through two complementary channels: a written report describing the problem and a 10-15 min video on the subject. The report includes the following items: description of the problem to be modeled, detailed obtention of the ODE that models the problem, its complete solution, and interpretation in the context of the original problem. We report the outcomes of this teaching in context and active learning experience, including the feedback received by the students. They highlighted the encouragement of creativity and originality, which are skills that they do not typically relate to mathematics. Additionally, the video format (unlike a common presentation) has the advantage of allowing them to critically review and self-assess the recording, repeating some parts until the result is satisfactory. As a side effect, they felt more confident about their oral abilities. In short, students agreed that they had fun preparing the video. They recognized that it was tricky to combine deep mathematical contents with entertainment since, without the latter, it is impossible to engage people to view the video till the end. Despite this difficulty, after the activity, they claimed to understand better the material, and they enjoyed showing the videos to family and friends during and after the project.Keywords: active learning, contextual teaching, models in differential equations, student-produced videos
Procedia PDF Downloads 145868 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability
Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini
Abstract:
Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.Keywords: cuticular waxes, drought, flammability, litter
Procedia PDF Downloads 171867 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber
Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen
Abstract:
Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption
Procedia PDF Downloads 360866 Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia
Authors: Remy Kulagowski, Tobias Sturm, Audrey Leopold, Aurelie Metay, Josephine Peigne, Alexis Thoumazeau, Alain Brauman, Bruno Fogliani, Florent Tivet
Abstract:
A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA.Keywords: conservation agriculture, cropping systems, ecosystem services, soil functions
Procedia PDF Downloads 157865 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 235864 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration
Procedia PDF Downloads 333863 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region
Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr
Abstract:
Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism
Procedia PDF Downloads 265862 Isolation and Identification of Salmonella spp and Salmonella enteritidis, from Distributed Chicken Samples in the Tehran Province using Culture and PCR Techniques
Authors: Seyedeh Banafsheh Bagheri Marzouni, Sona Rostampour Yasouri
Abstract:
Salmonella is one of the most important common pathogens between humans and animals worldwide. Globally, the prevalence of the disease in humans is due to the consumption of food contaminated with animal-derived Salmonella. These foods include eggs, red meat, chicken, and milk. Contamination of chicken and its products with Salmonella may occur at any stage of the chicken processing chain. Salmonella infection is usually not fatal. However, its occurrence is considered dangerous in some individuals, such as infants, children, the elderly, pregnant women, or individuals with weakened immune systems. If Salmonella infection enters the bloodstream, the possibility of contamination of tissues throughout the body will arise. Therefore, determining the potential risk of Salmonella at various stages is essential from the perspective of consumers and public health. The aim of this study is to isolate and identify Salmonella from chicken samples distributed in the Tehran market using the Gold standard culture method and PCR techniques based on specific genes, invA and ent. During the years 2022-2023, sampling was performed using swabs from the liver and intestinal contents of distributed chickens in the Tehran province, with a total of 120 samples taken under aseptic conditions. The samples were initially enriched in buffered peptone water (BPW) for pre-enrichment overnight. Then, the samples were incubated in selective enrichment media, including TT broth and RVS medium, at temperatures of 37°C and 42°C, respectively, for 18 to 24 hours. Organisms that grew in the liquid medium and produced turbidity were transferred to selective media (XLD and BGA) and incubated overnight at 37°C for isolation. Suspicious Salmonella colonies were selected for DNA extraction, and PCR technique was performed using specific primers that targeted the invA and ent genes in Salmonella. The results indicated that 94 samples were Salmonella using the PCR technique. Of these, 71 samples were positive based on the invA gene, and 23 samples were positive based on the ent gene. Although the culture technique is the Gold standard, PCR is a faster and more accurate method. Rapid detection through PCR can enable the identification of Salmonella contamination in food items and the implementation of necessary measures for disease control and prevention.Keywords: culture, PCR, salmonella spp, salmonella enteritidis
Procedia PDF Downloads 73861 Nanoemulsion Formulation of Ethanolic Extracts of Propolis and Its Antioxidant Activity
Authors: Rachmat Mauludin, Dita Sasri Primaviri, Irda Fidrianny
Abstract:
Propolis contains several antioxidant compounds which can be used in topical application to protect skin against free radical, prevent skin cancer and skin aging. Previous study showed that 70% ethanolic extract of propolis (EEP) provided the greatest antioxidant activity. Since EEP has very small solubility in water, the extract was prepared in nanoemulsion (NE). Nanoemulsion is chosen as cosmetic dosage forms according to its properties namely to decrease the risk of skin’s irritation, increase penetration, prolong its time to remain in our skin, and improve stability. Propolis was extracted using reflux methods and concentrated using rotavapor. EEP was characterized with several tests such as phytochemical screening, density, and antioxidant activity using DPPH method. Optimation of total surfactant, co-surfactant, oil, and amount of EEP that can be included in NE were required to get the best NE formulation. The evaluations included to organoleptic observation, globul size, polydispersity index, morphology using TEM, viscosity, pH, centrifuge, stability, Freeze and Thaw test, radical scavenging activity using DPPH method, and primary irritation test. The yield extracts was 11.12% from raw propolis contained of steroid/triterpenoid, flavonoid, and saponin based on phytochemical screening. EEP had the value of DPPH scavenging activity 61.14% and IC50 0.41629 ppm. The best NE formulation consisted of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP. NE was transparant, had globul size of 21.9 nm; polydispersity index of 0.338; and pH of 5.67. Based on TEM morphology, NE was almost spherical and has particle size below 50 nm. NE propolis revealed to be physically stable after stability test within 63 days at 25oC, centrifuged for 30 mins at 13.000 rpm, and passed 6 cycles of Freeze and Thaw test without separated. NE propolis reduced 58% of free radical DPPH similar to antioxidant activity of the original extracts. Antioxidant activity of NE propolis is relatively stable after stored for 6 weeks. NE Propolis was proven to be safe by primary irritation test with the value of primary irritation index (OECD) was 0. The best formulation for NE propolis contained of 26.25% Kolliphor RH40; 8.75% glycerine; 5% rice bran oil; and 3% EEP with globul size of 21.9 nm and polydispersity index of 0.338. NE propolis was stable and had antioxidant activity similar to EEP.Keywords: propolis, antioxidant, nanoemulsion, irritation test
Procedia PDF Downloads 305860 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill
Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens
Abstract:
Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity
Procedia PDF Downloads 538859 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis
Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe
Abstract:
Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism
Procedia PDF Downloads 145858 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia
Authors: Gashaw Gismu Chakilu
Abstract:
Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.Keywords: climate, LULC, SWAT, Ethiopia
Procedia PDF Downloads 375857 Evaluation of Phytochemical and Antidiarrhoeal Activity of Butanol Fraction of Terminalia avicennioides Leaf in Swiss Albino Rats
Authors: Fatima Mohammed Musa, J. B. Ameh, S. A. Ado, O. S. Olonitola
Abstract:
The study was undertaken to evaluate the phytochemical constituents of extracts of Terminalia avicennioides leaf and the antidiarrhoeal effect of n-butanol fraction of the leaf extract in Swiss albino rats infected with Salmonella Typhimurium and Escherichia coli. Ethanol crude extract of Terminalia avicennioides leaf was dissolved in 1.5 liters of sterile distilled water. The extract solution was partitioned with 250 ml each of chloroform, ethyl acetate and n-butanol solvents (1:1v/v) to obtain soluble fractions from the extract. The leaf extract and its fractions were screened for the presence of phytocompounds using standard analytical methods. The antidirrhoeal activity of n-butanol fraction was evaluated in Swiss albino rats using standard methods. The results of phytochemical screening of extract of Terminalia avicennioides leaf and its fractions, revealed the presence of carbohydrates, alkaloids, tannins, flavonoids, saponins, steroids, triterpens, glycosides and phenols. The results of in vivo activity showed that 60 % of each group of rats infected with 2.0 x 108 cfu/ml viable cells of S. Typhimurium and 2.0 x109 cfu/ml viable cells of E. coli manifested the symptoms of diarrhoea, 72 hours after the rats were challenged with bacteria. Other symptoms observed among the infected animals included, loss of appetite, loss of weight, general body weakness and 40 % mortality in S. Typhimurium infected non treated group of rats. Similarly, 60 %, and 20 % mortality was observed among E. coli infected none treated and E. coli infected antibiotic (metronidazole) treated groups of rats respectively. However, there was a reduction in the number of infected rats defecating watery stools over time among all the infected rats that were treated with n-butanol fraction of the leaf extract and mortality was also not observed in the group, indicating high efficacy of n-butanol fraction of T. avicennioides leaf. The results also indicated that n-butanol can be used as alternative source of antidiarrhoeal agent in the treatment of diarrhoea caused by Salmonella Typhimurium and Escherichia coli. In the light of this, there is a need for further research on the mechanism of action of the candidate fraction of T. avicennioides leaf which could be responsible for the observed in vivo antibacterial activity.Keywords: antidirrhoeal effect, phytochemical constituents, swiss albino rats, terminalia avicennioides
Procedia PDF Downloads 382856 The Liminal Performances of Female-Led (Sufi) Rituals: An Anthropological in Pakistan
Authors: Sana Iqbal
Abstract:
The female voice in Sufi poetry has been studied as a symbol of humility and devotion. Throughout the centuries, the Sufi shrines have also sheltered women and have served as a source of emotional strength in times of difficulty. Although women have been central to Sufi Islam, female-led rituals and performances (of veneration) are rarely studied as acts of empowerment and symbols of healing. This is especially true for rituals performed in informal spaces, which require going beyond the shrine practices. The rituals and meanings associated with Khizr Khwaja (or Sindhi Hindu god Jhelelal) among women in Punjab can serve as a useful case study to unpack some of these meanings. The paper aims to shed light on female-led rituals among women from Punjab associated with the folkloric traditions associated with Khizar Khwaja, Zinda Pir, Jhulelal or river god in the South Asian region to protect mariners from possible risks (since trade was primarily dependent on water channels) or for inducing timely rain date back to the 10th century in Sindh. However, these meanings and associations have evolved and the paper thus aims to establish a relationship between this figure and the women in Punjab by analysing the findings from an ethnographic study. It traces the historical meanings and significance attached to the divine figure and the wells (informal spaces) associated with him since the rituals performed by women is now infused solely with seeking fertility or to be blessed with a successful pregnancy, as opposed to him being celebrated for other reasons in older times. These associations beg the question of what women gain out of these rituals and making offerings to the mysterious figure of Khizr. Anecdotal evidence in the form of interviews conducted in Bhakar and Talwandi (Punjab) during the summer of 2015 helped to explore the stories related to this legend while also allowing us to witness some of the female-led ritual practices. It can be said that the symbols adopted in the ritual practices invoke liminality for women, which is a blend of opposites. The paper argues that this liminality/journey has been used as a vehicle to transcend all worldly structures of power and it symbolically emphasises the richness of feminine love/devotion and grants healing to female devotees.Keywords: transgression, gender, liminality, ritual
Procedia PDF Downloads 125855 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea
Authors: Kyomin Lee, Joohee Kim, Sangho Kang
Abstract:
The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.Keywords: characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste
Procedia PDF Downloads 209854 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 209853 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments
Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan
Abstract:
Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planningKeywords: clean fuels, hydrodynamics, coastal engineering, impact assessments
Procedia PDF Downloads 70852 The Effects of Drought and Nitrogen on Soybean (Glycine max (L.) Merrill) Physiology and Yield
Authors: Oqba Basal, András Szabó
Abstract:
Legume crops are able to fix atmospheric nitrogen by the symbiotic relation with specific bacteria, which allows the use of the mineral nitrogen-fertilizer to be reduced, or even excluded, resulting in more profit for the farmers and less pollution for the environment. Soybean (Glycine max (L.) Merrill) is one of the most important legumes with its high content of both protein and oil. However, it is recommended to combine the two nitrogen sources under stress conditions in order to overcome its negative effects. Drought stress is one of the most important abiotic stresses that increasingly limits soybean yields. A precise rate of mineral nitrogen under drought conditions is not confirmed, as it depends on many factors; soybean yield-potential and soil-nitrogen content to name a few. An experiment was conducted during 2017 growing season in Debrecen, Hungary to investigate the effects of nitrogen source on the physiology and the yield of the soybean cultivar 'Boglár'. Three N-fertilizer rates including no N-fertilizer (0 N), 35 kg ha-1 of N-fertilizer (35 N) and 105 kg ha-1 of N-fertilizer (105 N) were applied under three different irrigation regimes; severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Half of the seeds in each treatment were pre-inoculated with Bradyrhizobium japonicum inoculant. The overall results showed significant differences associated with fertilization and irrigation, but not with inoculation. Increasing N rate was mostly accompanied with increased chlorophyll content and leaf area index, whereas it positively affected the plant height only when the drought was waived off. Plant height was the lowest under severe drought, regardless of inoculation and N-fertilizer application and rate. Inoculation increased the yield when there was no drought, and a low rate of N-fertilizer increased the yield furthermore; however, the high rate of N-fertilizer decreased the yield to a level even less than the inoculated control. On the other hand, the yield of non-inoculated plants increased as the N-fertilizer rate increased. Under drought conditions, adding N-fertilizer increased the yield of the non-inoculated plants compared to their inoculated counterparts; moreover, the high rate of N-fertilizer resulted in the best yield. Regardless of inoculation, the mean yield of the three fertilization rates was better when the water amount increased. It was concluded that applying N-fertilizer to provide the nitrogen needed by soybean plants, with the absence of N2-fixation process, is very important. Moreover, adding relatively high rate of N-fertilizer is very important under severe drought stress to alleviate the drought negative effects. Further research to recommend the best N-fertilizer rate to inoculated soybean under drought stress conditions should be executed.Keywords: drought stress, inoculation, N-fertilizer, soybean physiology, yield
Procedia PDF Downloads 158851 Diversity of Large Mammals in Awash National Park and its Ecosystem Role and Biodiversity Conservation, Ethiopia
Authors: Sintayehu W. Dejene
Abstract:
An ecological and biodiversity conservation study on species composition, population status and habitat association of large mammals and the impact of human interference on their distribution was carried out in Awash National Park, Ethiopia during October, 2012 to July, 2013. A total of 25 species of large mammals were recorded from the study area. Representative sample sites were taken from each habitat type and surveyed using random line transect method. For medium and large mammal survey, indirect methods (foot print and dung) and direct observations were used. Twenty three species of medium to large-sized mammals were identified and recorded from ANP. A total of 25 species of median and large size mammals were recorded from the study area. Out of this, 20 species were rodents of three families and five species were insectivores of two families. Beisa Oryx (Oryx beisa beisa),Soemmerings gazelle (Gazella soemmeringi),Defassa waterbuck (Kobus defassa), Lesser Kudu (Strepsiceros imberbis), Greater Kudu (Strepsiceros strepsiceros), Warthog (Phacochoerus aethiopicus), Baboon (Papio anubis baboon) and Salt's dikdik (Madoqua saltiana) were the most common seen median and large mammals in the study area. Beisa Oryx (Oryx beisa beisa) and Sommering Gazelles (Gazella soemmeringi) are commonly found in the open areas, where as Greater Kudus (Strepsiceros strepsiceros) and Lesser Kudus (Strepsiceros imberbis) was seen in the bushed areas. Defarsa waterbuck (Kobus defassa) was observed in the bushy river area in Northern part of the Park. Anubis baboon (Papio anubis baboon) was seen near to the river side. Hamadryas baboon founded in semi-desert areas of Awash National Park, particularly in Filwoha area. The area is one of a key biodiversity conservation and provide pure water, air, food, grazing land and storage of carbon.Keywords: awash national park, biodiversity, ecosystem value, habitat association, large mammals, population status, species composition
Procedia PDF Downloads 382850 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 624849 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 257