Search results for: systems of representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10062

Search results for: systems of representation

9312 Intrusion Detection System Based on Peer to Peer

Authors: Alireza Pour Ebrahimi, Vahid Abasi

Abstract:

Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.

Keywords: network, intrusion detection system, peer to peer, internal and external network

Procedia PDF Downloads 523
9311 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio

Procedia PDF Downloads 141
9310 An Architectural Model of Multi-Agent Systems for Student Evaluation in Collaborative Game Software

Authors: Monica Hoeldtke Pietruchinski, Andrey Ricardo Pimentel

Abstract:

The teaching of computer programming for beginners has been presented to the community as a not simple or trivial task. Several methodologies and research tools have been developed; however, the problem still remains. This paper aims to present multi-agent system architecture to be incorporated to the educational collaborative game software for teaching programming that monitors, evaluates and encourages collaboration by the participants. A literature review has been made on the concepts of Collaborative Learning, Multi-agents systems, collaborative games and techniques to teach programming using these concepts simultaneously.

Keywords: architecture of multi-agent systems, collaborative evaluation, collaboration assessment, gamifying educational software

Procedia PDF Downloads 438
9309 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 60
9308 Space Time Adaptive Algorithm in Bi-Static Passive Radar Systems for Clutter Mitigation

Authors: D. Venu, N. V. Koteswara Rao

Abstract:

Space – time adaptive processing (STAP) is an effective tool for detecting a moving target in spaceborne or airborne radar systems. Since airborne passive radar systems utilize broadcast, navigation and excellent communication signals to perform various surveillance tasks and also has attracted significant interest from the distinct past, therefore the need of the hour is to have cost effective systems as compared to conventional active radar systems. Moreover, requirements of small number of secondary samples for effective clutter suppression in bi-static passive radar offer abundant illuminator resources for passive surveillance radar systems. This paper presents a framework for incorporating knowledge sources directly in the space-time beam former of airborne adaptive radars. STAP algorithm for clutter mitigation for passive bi-static radar has better quantitation of the reduction in sample size thereby amalgamating the earlier data bank with existing radar data sets. Also, we proposed a novel method to estimate the clutter matrix and perform STAP for efficient clutter suppression based on small sample size. Furthermore, the effectiveness of the proposed algorithm is verified using MATLAB simulations in order to validate STAP algorithm for passive bi-static radar. In conclusion, this study highlights the importance for various applications which augments traditional active radars using cost-effective measures.

Keywords: bistatic radar, clutter, covariance matrix passive radar, STAP

Procedia PDF Downloads 278
9307 Application of Imperialist Competitive Algorithm for Optimal Location and Sizing of Static Compensator Considering Voltage Profile

Authors: Vahid Rashtchi, Ashkan Pirooz

Abstract:

This paper applies the Imperialist Competitive Algorithm (ICA) to find the optimal place and size of Static Compensator (STATCOM) in power systems. The output of the algorithm is a two dimensional array which indicates the best bus number and STATCOM's optimal size that minimizes all bus voltage deviations from their nominal value. Simulations are performed on IEEE 5, 14, and 30 bus test systems. Also some comparisons have been done between ICA and the famous Particle Swarm Optimization (PSO) algorithm. Results show that how this method can be considered as one of the most precise evolutionary methods for the use of optimum compensator placement in electrical grids.

Keywords: evolutionary computation, imperialist competitive algorithm, power systems compensation, static compensators, voltage profile

Procedia PDF Downloads 586
9306 Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations

Authors: Adetunji A. Adeyanju., Mathew O. Omeike, Johnson O. Adeniran, Biodun S. Badmus

Abstract:

In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study.

Keywords: Aizermann, boundedness, first order, Lyapunov function, stability

Procedia PDF Downloads 65
9305 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 218
9304 Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing

Authors: Mahdi Alsagour, Sam Ramrattan

Abstract:

This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.

Keywords: alternative molding media, foundry sand, reclamation, silica sand, specialty sand

Procedia PDF Downloads 113
9303 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 318
9302 The Rail Traffic Management with Usage of C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper presents development results of usage of C-OTDR monitoring systems for rail traffic management. The C-OTDR method is based on vibrosensitive properties of optical fibers. Analysis of Rayleigh backscattering radiation parameters changes which take place due to microscopic seismoacoustic impacts on the optical fiber allows to determine seismoacoustic emission source positions and to identify their types. This approach proved successful for rail traffic management (moving block system, weigh- in-motion system etc).

Keywords: C-OTDR systems, moving block-sections, rail traffic management, Rayleigh backscattering, weigh-in-motion

Procedia PDF Downloads 564
9301 Feasibility Study on Developing and Enhancing of Flood Forecasting and Warning Systems in Thailand

Authors: Sitarrine Thongpussawal, Dasarath Jayasuriya, Thanaroj Woraratprasert, Sakawtree Prajamwong

Abstract:

Thailand grapples with recurrent floods causing substantial repercussions on its economy, society, and environment. In 2021, the economic toll of these floods amounted to an estimated 53,282 million baht, primarily impacting the agricultural sector. The existing flood monitoring system in Thailand suffers from inaccuracies and insufficient information, resulting in delayed warnings and ineffective communication to the public. The Office of the National Water Resources (OWNR) is tasked with developing and integrating data and information systems for efficient water resources management, yet faces challenges in monitoring accuracy, forecasting, and timely warnings. This study endeavors to evaluate the viability of enhancing Thailand's Flood Forecasting and Warning (FFW) systems. Additionally, it aims to formulate a comprehensive work package grounded in international best practices to enhance the country's FFW systems. Employing qualitative research methodologies, the study conducted in-depth interviews and focus groups with pertinent agencies. Data analysis involved techniques like note-taking and document analysis. The study substantiates the feasibility of developing and enhancing FFW systems in Thailand. Implementation of international best practices can augment the precision of flood forecasting and warning systems, empowering local agencies and residents in high-risk areas to prepare proactively, thereby minimizing the adverse impact of floods on lives and property. This research underscores that Thailand can feasibly advance its FFW systems by adopting international best practices, enhancing accuracy, and improving preparedness. Consequently, the study enriches the theoretical understanding of flood forecasting and warning systems and furnishes valuable recommendations for their enhancement in Thailand.

Keywords: flooding, forecasting, warning, monitoring, communication, Thailand

Procedia PDF Downloads 39
9300 Steady Conjugate Heat Transfer of Two Connected Thermal Systems

Authors: Mohamed El-Sayed Mosaad

Abstract:

An analytic approach is obtained for the steady heat transfer problem of two fluid systems, in thermal communication via heat conduction across a solid wall separating them. The two free convection layers created on wall sides are assumed to be in parallel flow. Fluid-solid interface temperature on wall sides is not prescribed in analysis in advance; rather, determined from conjugate solution among other unknown parameters. The analysis highlights the main conjugation parameters controlling thermal interaction process of involved heat transfer modes. Heat transfer results of engineering importance are obtained.

Keywords: conjugate heat transfer, boundary layer, convection, thermal systems

Procedia PDF Downloads 361
9299 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 103
9298 Genetic Algorithms Based ACPS Safety

Authors: Emine Laarouchi, Daniela Cancila, Laurent Soulier, Hakima Chaouchi

Abstract:

Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc.

Keywords: safety, unmanned aerial vehicles , CPS, ACPS, drones, path planning, genetic algorithms

Procedia PDF Downloads 164
9297 A New Protocol Ensuring Users' Privacy in Pervasive Environment

Authors: Mohammed Nadir Djedid, Abdallah Chouarfia

Abstract:

Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.

Keywords: pervasive systems, identification, authentication, privacy

Procedia PDF Downloads 455
9296 Using Soft Systems Methodology in the Healthcare Industry of Mauritius

Authors: Arun Kumar, Neelesh Haulder

Abstract:

This paper identifies and resolves some key issues relating to a specific aspect within the supply chain logistics of the public health care industry in the Republic of Mauritius. The analysis and the proposed solution are performed using soft systems methodology (SSM). Through the application of this relevant systematic approach at problem solving, the aim is to obtain an in-depth analysis of the problem, incorporating every possible world view of the problem and consequently to obtain a well explored solution aimed at implementing relevant changes within the current supply chain logistics of the health care industry, with the purpose of tackling the key identified issues.

Keywords: soft systems methodology, CATWOE, healthcare, logistics

Procedia PDF Downloads 493
9295 Design and Implementation of Embedded FM Transmission Control SW for Low Power Battery System

Authors: Young-Su Ryu, Kyung-Won Park, Jae-Hoon Song, Ki-Won Kwon

Abstract:

In this paper, an embedded frequency modulation (FM) transmission control software (SW) for a low power battery system is designed and implemented. The simultaneous translation systems for various languages are needed as so many international conferences and festivals are held in world wide. Especially in portable transmitting and receiving systems, the ability of long operation life is used for a measure of value. This paper proposes an embedded FM transmission control SW for low power battery system and shows the results of the SW implemented on a portable FM transmission system.

Keywords: FM transmission, simultaneous translation system, portable transmitting and receiving systems, low power embedded control SW

Procedia PDF Downloads 423
9294 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 459
9293 Secure E-Voting Using Blockchain Technology

Authors: Barkha Ramteke, Sonali Ridhorkar

Abstract:

An election is an important event in all countries. Traditional voting has several drawbacks, including the expense of time and effort required for tallying and counting results, the cost of papers, arrangements, and everything else required to complete a voting process. Many countries are now considering online e-voting systems, but the traditional e-voting systems suffer a lack of trust. It is not known if a vote is counted correctly, tampered or not. A lack of transparency means that the voter has no assurance that his or her vote will be counted as they voted in elections. Electronic voting systems are increasingly using blockchain technology as an underlying storage mechanism to make the voting process more transparent and assure data immutability as blockchain technology grows in popularity. The transparent feature, on the other hand, may reveal critical information about applicants because all system users have the same entitlement to their data. Furthermore, because of blockchain's pseudo-anonymity, voters' privacy will be revealed, and third parties involved in the voting process, such as registration institutions, will be able to tamper with data. To overcome these difficulties, we apply Ethereum smart contracts into blockchain-based voting systems.

Keywords: blockchain, AMV chain, electronic voting, decentralized

Procedia PDF Downloads 116
9292 Undocumented Migrants on the Northern Border of Mexico: Social Imaginary, and Social Representations

Authors: César Enrique Jiménez Yañez, Yessica Martinez Soto

Abstract:

In the present work, the phenomenon of undocumented migration in the northern border of Mexico is analyzed through the graphic representation of the experience of people who migrate in an undocumented way to the United States. 33 of them drew what it meant for them to migrate. Our objective is to analyze the social phenomenon of migration through the drawings of migrants, using the concepts of social imaginary and social representations, identifying the different significant elements with which this symbolically builds their experience. Drawing, as a methodological tool, will help us to understand the migratory experience beyond words.

Keywords: Mexico, social imaginary, social representations, undocumented migrants

Procedia PDF Downloads 373
9291 Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach

Authors: Walied Hanora

Abstract:

This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result.

Keywords: fuzzy lyapunov function, H∞ control , linear matrix inequalities, state feedback, T-S fuzzy systems

Procedia PDF Downloads 260
9290 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 428
9289 Evaluation of Corrosion Caused by Biogenic Sulfuric Acid (BSA) on the Concrete Structures of Sewerage Systems: Chemical Tests

Authors: M. Cortés, E. Vera, O. Rojas

Abstract:

The research studies of the kinetics of the corrosion process that attacks concrete and occurs within sewerage systems agree on the amount of variables that interfere in the process. This study aims to check the impact of the pH levels of the corrosive environment and the concrete surface, the concentrations of chemical sulfuric acid, and in turn, measure the resistance of concrete to this attack under controlled laboratory conditions; it also aims to contribute to the development of further research related to the topic, in order to compare the impact of biogenic sulfuric acid and chemical sulfuric acid involvement on concrete structures, especially in scenarios such as sewerage systems.

Keywords: acid sulfuric, concrete, corrosion, biogenic

Procedia PDF Downloads 361
9288 The Use of Learning Management Systems during Emerging the Tacit Knowledge

Authors: Ercan Eker, Muhammer Karaman, Akif Aslan, Hakan Tanrikuluoglu

Abstract:

Deficiency of institutional memory and knowledge management can result in information security breaches, loss of prestige and trustworthiness and the worst the loss of know-how and institutional knowledge. Traditional learning management within organizations is generally handled by personal efforts. That kind of struggle mostly depends on personal desire, motivation and institutional belonging. Even if an organization has highly motivated employees at a certain time, the institutional knowledge and memory life cycle will generally remain limited to these employees’ spending time in this organization. Having a learning management system in an organization can sustain the institutional memory, knowledge and know-how in the organization. Learning management systems are much more needed especially in public organizations where the job rotation is frequently seen and managers are appointed periodically. However, a learning management system should not be seen as an organizations’ website. It is a more comprehensive, interactive and user-friendly knowledge management tool for organizations. In this study, the importance of using learning management systems in the process of emerging tacit knowledge is underlined.

Keywords: knowledge management, learning management systems, tacit knowledge, institutional memory

Procedia PDF Downloads 356
9287 Portrayal of Women in Television Advertisement

Authors: Priya Sarah Vijoy

Abstract:

The aim of this study is to analyze the Portrayal of women in Television Advertisements. This research study is conducted to analyze how women are portrayed in Television Advertisements. Advertising dates back to several hundreds of years. Right from the beginning, the seller wanted his goods to be sold and he used various techniques for achieving his objective. Advertisements have consistently confined women to traditional mother, home, or beauty/sex-oriented roles that are not representative of women’s diversity. Currently, in our society the television stereotyping of woman is the dominating forces in the media that degrade women and limit their representation. Thus the study analyzes how women are portrayed in Television advertisements and find whether roles of women in Television Advertisement are related to the product or not.

Keywords: advertising, stereotyping, television, women

Procedia PDF Downloads 413
9286 Development of 3D Laser Scanner for Robot Navigation

Authors: Ali Emre Öztürk, Ergun Ercelebi

Abstract:

Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.

Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model

Procedia PDF Downloads 254
9285 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 225
9284 The Geometrical Cosmology: The Projective Cast of the Collective Subjectivity of the Chinese Traditional Architectural Drawings

Authors: Lina Sun

Abstract:

Chinese traditional drawings related to buildings and construction apply a unique geometry differentiating with western Euclidean geometry and embrace a collection of special terminologies, under the category of tu (the Chinese character for drawing). This paper will on one side etymologically analysis the terminologies of Chinese traditional architectural drawing, and on the other side geometrically deconstruct the composition of tu and locate the visual narrative language of tu in the pictorial tradition. The geometrical analysis will center on selected series of Yang-shi-lei tu of the construction of emperors’ mausoleums in Qing Dynasty (1636-1912), and will also draw out the earlier architectural drawings and the architectural paintings such as the jiehua, and paintings on religious frescoes and tomb frescoes as the comparison. By doing these, this research will reveal that both the terminologies corresponding to different geometrical forms respectively indicate associations between architectural drawing and the philosophy of Chinese cosmology, and the arrangement of the geometrical forms in the visual picture plane facilitates expressions of the concepts of space and position in the geometrical cosmology. These associations and expressions are the collective intentions of architectural drawing evolving in the thousands of years’ tradition without breakage and irrelevant to the individual authorship. Moreover, the architectural tu itself as an entity, not only functions as the representation of the buildings but also express intentions and strengthen them by using the Chinese unique geometrical language flexibly and intentionally. These collective cosmological spatial intentions and the corresponding geometrical words and languages reveal that the Chinese traditional architectural drawing functions as a unique architectural site with subjectivity which exists parallel with buildings and express intentions and meanings by itself. The methodology and the findings of this research will, therefore, challenge the previous researches which treat architectural drawings just as the representation of buildings and understand the drawings more than just using them as the evidence to reconstruct the information of buildings. Furthermore, this research will situate architectural drawing in between the researches of Chinese technological tu and artistic painting, bridging the two academic areas which usually treated the partial features of architectural drawing separately. Beyond this research, the collective subjectivity of the Chinese traditional drawings will facilitate the revealing of the transitional experience from traditions to drawing modernity, where the individual subjective identities and intentions of architects arise. This research will root for the understanding both the ambivalence and affinity of the drawing modernity encountering the traditions.

Keywords: Chinese traditional architectural drawing (tu), etymology of tu, collective subjectivity of tu, geometrical cosmology in tu, geometry and composition of tu, Yang-shi-lei tu

Procedia PDF Downloads 102
9283 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Baris Can Yalcin

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: design, mechatronics, motion sensor, data acquisition

Procedia PDF Downloads 562