Search results for: solvent extraction‎
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2482

Search results for: solvent extraction‎

1732 Is there Anything Useful in That? High Value Product Extraction from Artemisia annua L. in the Spent Leaf and Waste Streams

Authors: Anike Akinrinlade

Abstract:

The world population is estimated to grow from 7.1 billion to 9.22 billion by 2075, increasing therefore by 23% from the current global population. Much of the demographic changes up to 2075 will take place in the less developed regions. There are currently 54 countries which fall under the bracket of being defined as having ‘low-middle income’ economies and need new ways to generate valuable products from current resources that is available. Artemisia annua L is well used for the extraction of the phytochemical artemisinin, which accounts for around 0.01 to 1.4 % dry weight of the plant. Artemisinin is used in the treatment of malaria, a disease rampart in sub-Saharan Africa and in many other countries. Once artemisinin has been extracted the spent leaf and waste streams are disposed of as waste. A feasibility study was carried out looking at increasing the biomass value of A. annua, by designing a biorefinery where spent leaf and waste streams are utilized for high product generation. Quercetin, ferulic acid, dihydroartemisinic acid, artemisinic acid and artemsinin were screened for in the waste stream samples and the spent leaf. The analytical results showed that artemisinin, artemisinic acid and dihydroartemisinic acid were present in the waste extracts as well as camphor and arteannuin b. Ongoing effects are looking at using more industrially relevant solvents to extract the phytochemicals from the waste fractions and investigate how microwave pyrolysis of spent leaf can be utilized to generate bio-products.

Keywords: high value product generation, bioinformatics, biomedicine, waste streams, spent leaf

Procedia PDF Downloads 347
1731 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 145
1730 Reactions of 4-Aryl-1H-1,2,3-Triazoles with Cycloalkenones and Epoxides: Synthesis of 2,4- and 1,4-Disubstituted 1,2,3-Triazoles

Authors: Ujjawal Kumar Bhagat, Kamaluddin, Rama Krishna Peddinti

Abstract:

The Huisgen’s 1,3-dipolar [3+2] cycloaddition of organic azides and alkynes often give the mixtures of both the regioisomers 1,4- and 1,5- disubstituted 1,2,3-triazoles. Later, in presence of metal salts (click chemistry) such as copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was used for the synthesis of 1,4-disubstituted 1,2,3-triazoles as a sole products regioselectively. Also, the ‘click reactions’ of Ruthenium-catalyzed azides-alkynes cycloaddition (RuAAC) is used for the synthesis of 1,5-disubstituted 1,2,3-triazoles as a single isomer. The synthesis of 1,4- and 1.5-disubstituted 1,2,3-triazoles has become the gold standard of ‘click chemistry’ due to its reliability, specificity, and biocompatibility. The 1,4- and 1,5-disubstituted 1,2,3-triazoles have emerged as one of the most powerful entities in the varieties of biological properties like antibacterial, antitubercular, antitumor, antifungal and antiprotozoal activities. Some of the 1,4,5-trisubstituted 1,2,3-triazoles exhibit Hsp90 inhibiting properties. The 1,4-disubstituted 1,2,3-triazoles also play a big role in the area of material sciences. The triazole-derived oligomeric, polymeric structures are the potential materials for the preparation of organic optoelectronics, silicon elastomers and unimolecular block copolymers. By the virtue of hydrogen bonding and dipole interactions, the 1,2,3-triazole moiety readily associates with the biological targets. Since, the 4-aryl-1H-1,2,3-triazoles are stable entities, they are chemically robust and very less reactive. In this regard, the addition of 4-aryl-1H-1,2,3-triazoles as nucleophiles to α,β-unsaturated carbonyls and nucleophilic substitution with the epoxides constitutes a powerful and challenging synthetic approach for the generation of disubstituted 1,2,3-triazoles. Herein, we have developed aza-Michael addition of 4-aryl-1H-1,2,3-triazoles to 2-cycloalken-1-ones in the presence of an organic base (DABCO) in acetonotrile solvent leading to the formation of disubstituted 1,2,3-triazoles. The reaction provides 1,4-disubstituted triazoles, 3-(4-aryl-1H-1,2,3-triazol-1-yl)cycloalkanones in major amount along with 1,5-disubstituted 1,2,3-triazoles, minor regioisomers with excellent combined chemical yields (upto99%). The nucleophilic behavior of 4-aryl-1H-1,2,3-triazoles was also tested in the ring opening of meso-epoxides in the presence of organic bases (DABCO/Et3N) in acetonotrile solvent furnishing the two regioisomers1,4- and 1,5-disubstituted 1,2,3-triazoles. Thus, the novelty of this methodology is synthesis of diversified disubstituted 1,2,3-triazoles under metal free condition.The results will be presented in detail.

Keywords: aza-Michael addition, cycloalkenones, epoxides, triazoles

Procedia PDF Downloads 321
1729 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 622
1728 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater

Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah

Abstract:

Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and   amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.

Keywords: nanocomposite, sorbent materials, waste water, waste polystyrene

Procedia PDF Downloads 427
1727 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 24
1726 Cardioprotective Effect of the Leaf Extract of Andrographis Paniculata in Isoproterenol-Induced Myocardial Infarction

Authors: Emmanuel Ikechuckwu Onwubuya, Afees Adebayo Oladejo

Abstract:

Background: The use of medicinal plants in the treatment of chronic diseases especially myocardial infarction, is gaining wide acceptance globally. Andrographis paniculata (Acanthaceae) is a medicinal plant commonly known as the king of bitters in Nigeria and has been acclaimed for several therapeutic activities. Materials and methods: This study investigated the cardio-protective effect of the leaf extract of A. paniculata in isoproterenol-induced myocardial infarction. Fresh green leaves of A paniculata were harvested from the Faculty of Agriculture farmland, Nnamdi Azikiwe University, Awka, Nigeria. Identification and authentication of the plant were carried out at the Department of Botany, Nnamdi Azikiwe University and a voucher specimen was deposited at the herbarium. The plant material was then shredded, air-dried under shade and pulverized. The fine powders obtained were weighed and extraction was done via a solvent combination of water and ethanol (3:7) for 72 hr via maceration. The filtrate gotten was evaporated to dryness to obtain the ethanol extract, which was used for further bioassay study. The bioactive constituents of the plant extract were quantitatively analyzed by Gas chromatography-mass spectrometry (GC-MS). The animals were administered the extract of A. paniculata orally for seven days at a divided dose of 100 mg/kg, 200 mg/kg and 400 mg/kg body weights. On the eighth day, myocardial infarction was induced through subcutaneous administration of isoproterenol at a dose of 150 mg/kg/day diluted in 2 ml of saline on two consecutive days. Subsequently, the blood pressures were monitored and blood was collected for bioassay studies. Results: The results of the study showed that the leaf extract of A. paniculata was rich in Dodecanoic acid (8.261%), 4-Dibenzofuranamine (6.03%), Cyclotrisiloxane (4.679 %). The findings also showed a significant decrease (p>0.05) in the Mean arterial blood pressure, heart rate, aspartate transaminase, alanine transaminase, creatinine kinase and lactate dehydrogenase activities of the treatment group compared with the untreated control group while the antioxidant (superoxide dismutase, catalase and glutathione) activities were significantly increased in the treatment group, compared with the untreated control group. Conclusion: The findings of this work have shown that the leaf of A. paniculata was rich in bioactive compounds, which could be synthesized to produce plant-based products to fight cardiovascular diseases, especially myocardial infarction.

Keywords: cardiovascular disease, myocardial infarction, medicinal plant, andrographis paniculata, isoproterenol

Procedia PDF Downloads 117
1725 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field

Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso

Abstract:

Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.

Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate

Procedia PDF Downloads 258
1724 Synthesis of Antifungal by the Use of Green Catalyst

Authors: Elmeliani M’Hammed

Abstract:

The work is carried out for the synthesis of antifungal effective against the fungus Fusarium oxysporum, Albedinis (Foa), the causative agent of bayoud, dates palm disease, through the use of raw clay as a green catalyst. The Aza-Michael reaction of amine addition to α, β-unsaturated alkene was carried out using the crude clay as a green catalyst to synthesize the antifungal agent bayoud. The reaction was carried out under favorable conditions, ambient temperature, without solvent, and a green catalyst "loves the environment" that the product that was synthesized gave us a high yield and excellent chemo selectivity.

Keywords: raw clay, amines, alkenes, environment, antifungal, bayoud, date palms

Procedia PDF Downloads 97
1723 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin

Authors: Ndana Mohammed, Abdullahi Musa Sabo

Abstract:

The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.

Keywords: biodiesel, characterization, esterification, optimization, transesterification

Procedia PDF Downloads 419
1722 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens

Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada

Abstract:

Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.

Keywords: bioethanol, co-culture, fermentation, saccharification

Procedia PDF Downloads 84
1721 Feasibility of Chicken Feather Waste as a Renewable Resource for Textile Dyeing Processes

Authors: Belayihun Missaw

Abstract:

Cotton cationization is an emerging area that solves the environmental problems associated with the reactive dyeing of cotton. In this study, keratin hydrolysate cationizing agent from chicken feather was extracted and optimized to eliminate the usage of salt during dyeing. Cationization of cotton using the extracted keratin hydrolysate and dyeing of the cationized cotton without salt was made. The effect of extraction parametric conditions like concentration of caustic soda, temperature and time were studied on the yield of protein from chicken feather and colour strength (K/S) values, and these process conditions were optimized. The optimum extraction conditions were. 25g/l caustic soda, at 500C temperature and 105 minutes with average yield = 91.2% and 4.32 colour strength value. The effect of salt addition, pH and concentration of cationizing agent on yield colour strength was also studied and optimized. It was observed that slightly acidic condition with 4% (% owf) concentration of cationizing agent gives a better dyeability as compared to normal cotton reactive dyeing. The physical properties of cationized-dyed fabric were assessed, and the result reveals that the cationization has a similar effect as normal dyeing of cotton. The cationization of cotton with keratin extract was found to be successful and economically viable.

Keywords: cotton materials, cationization, reactive dye, keratin hydrolysate

Procedia PDF Downloads 62
1720 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 61
1719 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm

Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta

Abstract:

Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.

Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates

Procedia PDF Downloads 235
1718 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 127
1717 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 306
1716 Estimation of Forces Applied to Forearm Using EMG Signal Features to Control of Powered Human Arm Prostheses

Authors: Faruk Ortes, Derya Karabulut, Yunus Ziya Arslan

Abstract:

Myoelectric features gathering from musculature environment are considered on a preferential basis to perceive muscle activation and control human arm prostheses according to recent experimental researches. EMG (electromyography) signal based human arm prostheses have shown a promising performance in terms of providing basic functional requirements of motions for the amputated people in recent years. However, these assistive devices for neurorehabilitation still have important limitations in enabling amputated people to perform rather sophisticated or functional movements. Surface electromyogram (EMG) is used as the control signal to command such devices. This kind of control consists of activating a motion in prosthetic arm using muscle activation for the same particular motion. Extraction of clear and certain neural information from EMG signals plays a major role especially in fine control of hand prosthesis movements. Many signal processing methods have been utilized for feature extraction from EMG signals. The specific objective of this study was to compare widely used time domain features of EMG signal including integrated EMG(IEMG), root mean square (RMS) and waveform length(WL) for prediction of externally applied forces to human hands. Obtained features were classified using artificial neural networks (ANN) to predict the forces. EMG signals supplied to process were recorded during only type of muscle contraction which is isometric and isotonic one. Experiments were performed by three healthy subjects who are right-handed and in a range of 25-35 year-old aging. EMG signals were collected from muscles of the proximal part of the upper body consisting of: biceps brachii, triceps brachii, pectorialis major and trapezius. The force prediction results obtained from the ANN were statistically analyzed and merits and pitfalls of the extracted features were discussed with detail. The obtained results are anticipated to contribute classification process of EMG signal and motion control of powered human arm prosthetics control.

Keywords: assistive devices for neurorehabilitation, electromyography, feature extraction, force estimation, human arm prosthesis

Procedia PDF Downloads 366
1715 Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field

Authors: Zerroug Abdelhamid, Danielle Chassoux

Abstract:

Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods.

Keywords: simulation, cancerous tumor, Markov fields, fractal dimension, extraction, recovering

Procedia PDF Downloads 363
1714 To Study the Effect of Drying Temperature Towards Extraction of Aquilaria subintegra Dry Leaves Using Vacuum Far Infrared

Authors: Tengku Muhammad Rafi Nazmi Bin Tengku Razali, Habsah Alwi

Abstract:

This article based on effect of temperature towards extraction of Aquilaria Subintegra. Aquilaria Subintegra which its main habitat is in Asia-tropical and particularly often found in its native which is Thailand. There is claim which is Aquilaria Subintegra contains antipyretic properties that helps fight fever. Research nowadays also shown that paracetamol consumed bring bad effect towards consumers. This sample will first dry using Vacuum Far Infrared which provides better drying than conventional oven. Soxhlet extractor used to extract oil from sample. Gas Chromatography Mass Spectrometer used to analyze sample to determine its compound. Objective from this research was to determine the active ingredients that exist in the Aquilaria Subintegra leaves and to determine whether compound of Acetaminophen exist or not inside the leaves. Moisture content from 400C was 80%, 500C was 620% and 600C was 36%. The greater temperature resulting lower moisture content inside sample leaves. 7 components were identified in sample T=400C while only 5 components were identified in sample at T=50C and T=60C. Four components were commonly identified in three sample which is 1n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, methyl ester (z,z,z), Vitamin E and Squalene. Further studies are needed with new series of temperature to refine the best results.

Keywords: aquilaria subintegra, vacuum far infrared, SOXHLET extractor, gas chromatography mass spectrometer, paracetamol

Procedia PDF Downloads 484
1713 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 325
1712 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 246
1711 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments

Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez

Abstract:

Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.

Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production

Procedia PDF Downloads 115
1710 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 187
1709 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 68
1708 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 374
1707 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.

Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop

Procedia PDF Downloads 476
1706 High Performance Liquid Cooling Garment (LCG) Using ThermoCore

Authors: Venkat Kamavaram, Ravi Pare

Abstract:

Modern warfighters experience extreme environmental conditions in many of their operational and training activities. In temperatures exceeding 95°F, the body’s temperature regulation can no longer cool through convection and radiation. In this case, the only cooling mechanism is evaporation. However, evaporative cooling is often compromised by excessive humidity. Natural cooling mechanisms can be further compromised by clothing and protective gear, which trap hot air and moisture close to the body. Creating an efficient heat extraction apparel system that is also lightweight without hindering dexterity or mobility of personnel working in extreme temperatures is a difficult technical challenge and one that needs to be addressed to increase the probability for the future success of the US military. To address this challenge, Oceanit Laboratories, Inc. has developed and patented a Liquid Cooled Garment (LCG) more effective than any on the market today. Oceanit’s LCG is a form-fitting garment with a network of thermally conductive tubes that extracts body heat and can be worn under all authorized and chemical/biological protective clothing. Oceanit specifically designed and developed ThermoCore®, a thermally conductive polymer, for use in this apparel, optimizing the product for thermal conductivity, mechanical properties, manufacturability, and performance temperatures. Thermal Manikin tests were conducted in accordance with the ASTM test method, ASTM F2371, Standard Test Method for Measuring the Heat Removal Rate of Personal Cooling Systems Using a Sweating Heated Manikin, in an environmental chamber using a 20-zone sweating thermal manikin. Manikin test results have shown that Oceanit’s LCG provides significantly higher heat extraction under the same environmental conditions than the currently fielded Environmental Control Vest (ECV) while at the same time reducing the weight. Oceanit’s LCG vests performed nearly 30% better in extracting body heat while weighing 15% less than the ECV. There are NO cooling garments in the market that provide the same thermal extraction performance, form-factor, and reduced weight as Oceanit’s LCG. The two cooling garments that are commercially available and most commonly used are the Environmental Control Vest (ECV) and the Microclimate Cooling Garment (MCG).

Keywords: thermally conductive composite, tubing, garment design, form fitting vest, thermocore

Procedia PDF Downloads 111
1705 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 126
1704 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 435
1703 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 524