Search results for: social network size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18725

Search results for: social network size

17975 Investigating the Relationship of Social Capital with Student's Aggressive Behavior: Case Study of Male Students of Middle School in Isfahan

Authors: Mohammadreza Kolaei, Vahid Ghasemi, Ebrahim Ansari

Abstract:

This research was carried out with the aim of investigating the relationship between social capital and aggressive behavior of students (Case study: male students of middle school in Isfahan). In terms of methodology, this research is an applied research which is done by descriptive-analytical method and survey method. The instrument for collecting the data was a questionnaire consisting of: questionnaire for measuring aggressive behavior and social capital questionnaire, which was used after the validity and reliability of this questionnaire. On the other hand, the statistical population of the study consisted of all students in the guidance school of Isfahan in the academic year of 2016. For determining the sample size, the Kerjesy and Morgan tables were used and the sampling method of this multi-stage random sampling was used. After collecting the data, they were analyzed by SPSS software. The findings of the research showed that at 95% confidence level, the student's social capital increases, reducing his aggressiveness. Also, the amount of student aggression is estimated at 4% according to its social capital. Also, with increasing social capital of the school, the student's student aggression is reduced, with the student's student aggression's exposure to her social capital being estimated at 3%. On the other hand, increasing the amount of mother's presence in the home decreases the amount of student aggression. Also, the amount of student aggression is estimated at 1% according to the amount of mother's presence in her home. Ultimately, the amount of student aggression decreases with increasing presence of father at home. Also, the amount of student aggression is estimated at 2% according to the variable of father's presence in his home.

Keywords: investigating, social capital, aggressive behavior, students, middle school, Isfahan

Procedia PDF Downloads 285
17974 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 21
17973 Towards Update a Road Map Solution: Use of Information Obtained by the Extraction of Road Network and Its Nodes from a Satellite Image

Authors: Z. Nougrara, J. Meunier

Abstract:

In this paper, we present a new approach for extracting roads, there road network and its nodes from satellite image representing regions in Algeria. Our approach is related to our previous research work. It is founded on the information theory and the mathematical morphology. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. The main interest of this study is to solve the problem of the automatic mapping from satellite images. This study is thus applied for that the geographical representation of the images is as near as possible to the reality.

Keywords: nodes, road network, satellite image, updating a road map

Procedia PDF Downloads 425
17972 Implementing a Prevention Network for the Ortenaukreis

Authors: Klaus Froehlich-Gildhoff, Ullrich Boettinger, Katharina Rauh, Angela Schickler

Abstract:

The Prevention Network Ortenaukreis, PNO, funded by the German Ministry of Education and Research, aims to promote physical and mental health as well as the social inclusion of 3 to 10 years old children and their families in the Ortenau district. Within a period of four years starting 11/2014 a community network will be established. One regional and five local prevention representatives are building networks with stakeholders of the prevention and health promotion field bridging the health care, educational and youth welfare system in a multidisciplinary approach. The regional prevention representative implements regularly convening prevention and health conferences. On a local level, the 5 local prevention representatives implement round tables in each area as a platform for networking. In the setting approach, educational institutions are playing a vital role when gaining access to children and their families. Thus the project will offer 18 month long organizational development processes with specially trained coaches to 25 kindergarten and 25 primary schools. The process is based on a curriculum of prevention and health promotion which is adapted to the specific needs of the institutions. Also to ensure that the entire region is reached demand oriented advanced education courses are implemented at participating day care centers, kindergartens and schools. Evaluation method: The project is accompanied by an extensive research design to evaluate the outcomes of different project components such as interview data from community prevention agents, interviews and network analysis with families at risk on their support structures, data on community network development and monitoring, as well as data from kindergarten and primary schools. The latter features a waiting-list control group evaluation in kindergarten and primary schools with a mixed methods design using questionnaires and interviews with pedagogues, teachers, parents, and children. Results: By the time of the conference pre and post test data from the kindergarten samples (treatment and control group) will be presented, as well as data from the first project phase, such as qualitative interviews with the prevention coordinators as well as mixed methods data from the community needs assessment. In supporting this project, the Federal Ministry aims to gain insight into efficient components of community prevention and health promotion networks as it is implemented and evaluated. The district will serve as a model region, so that successful components can be transferred to other regions throughout Germany. Accordingly, the transferability to other regions is of high interest in this project.

Keywords: childhood research, health promotion, physical health, prevention network, psychological well-being, social inclusion

Procedia PDF Downloads 222
17971 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations

Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang

Abstract:

A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.

Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification

Procedia PDF Downloads 459
17970 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 151
17969 Intelligent Earthquake Prediction System Based On Neural Network

Authors: Emad Amar, Tawfik Khattab, Fatma Zada

Abstract:

Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.

Keywords: BP neural network, prediction, RBF neural network, earthquake

Procedia PDF Downloads 496
17968 Parents-Children Communication in College

Authors: Yin-Chen Liu, Chih-Chun Wu, Mei-He Shih

Abstract:

In this technology society, using ICT(Information and communications technology) to contact each other is very common. Interpersonal ICT communication maintains social support. Therefore, the study investigated the ICT communication between undergraduates and their parents, and gender differences were also detected. The sample size was 1,209 undergraduates, including 624(51.6%) males, 584(48.3%) females, and 1 gender unidentified. In the sample, 91.8% of the sample used phones to contact their fathers and 93.8% of them use phones to contact their mothers. 78.5% and 87.6% of the sample utilized LINE to contact their fathers and mothers respectively. As for Facebook, only 13.4% and 16.5% of the sample would use to contact their fathers and mothers respectively. Aforementioned results implied that the undergraduates nowadays use phone and LINE to contact their parents more common than Facebook. According to results from Pearson correlations, the more undergraduates refused to add their fathers as their Facebook friends, the more they refused to add their mothers as Facebook friends. The possible reasons for it could be that to distinguish different social network such as family and friends. Another possible reason could be avoiding parents’ controlling. It could be why the kids prefer to use phone and LINE to Facebook when contacting their parents. Result from Pearson correlations showed that the more undergraduates actively contact their fathers, the more they actively contact their mothers. On the other hand, the more their fathers actively contact them, the more their mothers actively contact them. Based on the results, this study encourages both parents and undergraduates to contact each other, for any contact between any two family members is associated with contact between other two family members. Obviously, the contact between family members is bidirectional. Future research might want to investigate if this bidirectional contact is associated with the family relation. For gender differences, results from the independent t-tests showed that compared to sons, daughters actively contacted their parents more. Maybe it is because parents keep saying that it is dangerous out there for their daughters, so they build up the habit for their daughters to contact them more. Results from paired sample t-tests showed that the undergraduates agreed that talking to mother on the phone had more satisfaction, felt more intimacy and supported than fathers.

Keywords: family ICT communication, parent-child ICT communication, FACEBOOK and LINE, gender differences

Procedia PDF Downloads 203
17967 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: plasma antenna, fluorescent tube, CST, plasma parameters

Procedia PDF Downloads 387
17966 An Examination of the Relationship between Adolescents' Social Media Use and Social Appearance Anxiety

Authors: Aynur Bütün Ayhan, Utku Beyazıt

Abstract:

Adolescents can be heavily influenced by social media content as they develop their identities and body images. Therefore, the intensive use of social media platforms may have important effects on their body image beliefs. In this context, the objective of the present study was to assess the relationship between adolescents' social media use and their body image concerns. The study included 265 adolescents (133 girls and 132 boys) between the ages of 15 and 17 who were attending a high school in Ankara, Türkiye. In the study, the adolescents were administered the Social Media Addiction Scale to assess their level of social media use and the Social Appearance Anxiety Scale to assess their social appearance anxiety. Prior to analysis, a normality test was applied, and it was determined that the data displayed a non-parametric distribution. As a result, a significant positive relationship (r=.322, p<.01) was found between adolescents' level of social use and social appearance anxiety. It was also determined that social media addiction and social appearance anxiety significantly differed (p<.05) according to adolescents' opinions about their own bodies, being influenced by body images they see on social media and weight perceptions. The findings suggest that social media use should be managed carefully for adolescents to develop a healthy body image.

Keywords: social media, adolescent, social appearence, anxiety

Procedia PDF Downloads 23
17965 Hypergraph Models of Metabolism

Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova

Abstract:

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Keywords: complexity, hypergraphs, reciprocity, metabolism

Procedia PDF Downloads 297
17964 The Effect of Corporate Social Responsibility on Human Resource Performance in the Selected Medium-Size Manufacturing Organisation in South Africa

Authors: Itumeleng Judith Maome, Robert Walter Dumisani Zondo

Abstract:

The concept of Corporate Social Responsibility (CSR) has gained popularity as a management philosophy in companies. They integrate social and environmental concerns into their operations and interactions with stakeholders. While CSR has mostly been associated with large organisations, it contributes to societal goals by engaging in activities or supporting volunteering or ethically oriented practices. However, small and medium enterprises (SMEs) have been recognised for their contributions to the social and economic development of any country. Consequently, this study examines the effect of CSR practices on human resource performance in the selected manufacturing SME in South Africa. This study was quantitative in design and examined the production and related experiences of the manufacturing SME organisation that had adopted a CSR strategy for human resource improvement. The study was achieved by collecting pre- and post-quarterly data, overtime, for employee turnover and labour absenteeism for analysis using the regression model. The results indicate that both employee turnover and labour absenteeism have no relationship with human resource performance post-CSR implementation. However, CSR has a relationship with human resource performance. Any increase in CSR activities results in an increase in human resource performance.

Keywords: corporate social responsibility, employee turnover, human resource, labour absenteeism, manufacturing SME

Procedia PDF Downloads 76
17963 Zinc Contaminate on Urban Roadside in Rush Hour, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

This research aims to study the Zinc (Zn) concentration in fine particulate matter on Rajchawithee roadside in rush hour. 30 Samples were collected in Jun to August 2013 by 8 stage non-avaible cascade impactor. Each samples (filter paper) were digest with nitric acid and analyed by atomic absorption spectrophotometer for Zinc determination. The highest value for the mean fraction (18.00 ± 9.28 %) is the size 9.0 – 110.0 micron follow by the range 3.3 – 4.7 micron (14.77 ± 14.66 %) and 1.1 – 2.1 micron (14.01 ± 11.77 %) .The concentration of Zn in the particulate matter of range 0.43 – 0.7 μm, 0.7 – 1.1 μm, 1.1 – 2.1 μm, 2.1 – 3.3 μm, 3.3 – 4.7 μm, 4.7 – 5.8 μm, 5.8 – 9.0 μm, 9.0 – 10.0 μm, were 41.56 – 217.62 μg/m3 (175.86 ± 32.25 μg/m3), 152.60 – 217.24 μg/m3 (187.71 ± 17.42 μg/m3), 142.90 – 214.67 μg/m3 (180.95 ± 18.71 μg/m3), 155.48 – 218.19 μg/m3 (183.22 ± 19.94 μg/m3), 151.72 – 217.39 μg/m3 (181.85 ± 17.57 μg/m3), 133.86 – 220.17 μg/m3 (178.78 ± 23.45 μg/m3), 160.00 – 220.35 μg/m3 (182.58 ± 18.08 μg/m3), 153.30 – 226.70 μg/m3 (181.52 ± 20.05 μg/m3), repectively. The Zn concentration in each size of particulate matter was not statistically significant different (p > .005)

Keywords: air pollution, particulate matter, size distribution, zinc

Procedia PDF Downloads 314
17962 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 297
17961 An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment

Authors: O. G. Omogunloye, J. B. Olaleye, O. E. Abiodun, J. O. Odumosu, O. G. Ajayi

Abstract:

The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved.

Keywords: design, differential, geodetic, matrix, network, station

Procedia PDF Downloads 356
17960 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors

Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin

Abstract:

In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.

Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration

Procedia PDF Downloads 333
17959 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognize objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor~(DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network~(SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modeled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study's largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognize the postures with an accuracy of around 86.4% -only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much-improved cost to performance trade-off in its approach.

Keywords: spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system

Procedia PDF Downloads 472
17958 Cultural Regeneration and Social Impacts of Industrial Heritage Transformation: The Case of Westergasfabriek Cultural Park, Netherland

Authors: Hsin Hua He

Abstract:

The purpose of this study is to strengthen the social cohesion of the local community by injecting the cultural and creative concept into the industrial heritage transformation. The paradigms of industrial heritage research tend to explore from the perspective of space analysis, which concerned less about the cultural regeneration and the development of local culture. The paradigms of cultural quarter research use to from the perspective of creative economy and urban planning, concerned less about the social impacts and the interaction between residents and industrial sites. This research combines these two research areas of industrial heritage and cultural quarter, and focus on the social and cultural aspects. The transformation from the industrial heritage into a cultural park not only enhances the cultural capital and the quality of residents’ lives, but also preserves the unique local values. Internally it shapes the local identity, while externally establishes the image of the city. This paper uses Westergasfabriek Cultural Park in Amsterdam as the case study, through literature analysis, field work, and depth interview to explore how the cultural regeneration transforms industrial heritage. In terms of the planners’ and residents’ point of view adopt the theory of community participation, social capital, and sense of place to analyze the social impact of the industrial heritage transformation. The research finding is through cultural regeneration policies like holding cultural activities, building up public space, social network and public-private partnership, and adopting adaptive reuse to fulfil the people’s need and desire and reach the social cohesion. Finally, the study will examine the transformation of Taiwan's industrial heritage into cultural and creative quarters. The results are expected to use the operating experience of the Amsterdam cases and provide directions for Taiwan’s industrial heritage management to meet the cultural, social, economic symbiosis.

Keywords: cultural regeneration, community participation, social capital, sense of place, industrial heritage transformation

Procedia PDF Downloads 504
17957 Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis

Authors: Jian Xu, Xiaochun Yun, Yongzheng Zhang, Yafei Sang, Zhenyu Cheng

Abstract:

Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces.

Keywords: attribution trace, probabilistic relevance, network attack, attacker identification

Procedia PDF Downloads 366
17956 Variables for Measuring the Impact of the Social Enterprises in the Field of Community Development

Authors: A. Irudaya Veni Mary, M. Victor Louis Anthuvan, P. Christie, A. Indira

Abstract:

In India, social enterprises are working to create social value in various fields including education; health; women and child development; environment protection and community development. Although social enterprises have brought about tremendous changes in the lives of beneficiaries, the importance of their works is not understood thoroughly. One of the ways to prove themselves is to measure the impact, which in recent times has received much attention. This paper focuses on the study of social value created by the social enterprises in the field of community development. It also aims to put forth a research tool for measuring the social value created by the social enterprises in the field of community development. A close-ended interview schedule was prepared to measure the social value creation and it was administered among 60 beneficiaries of two social enterprises who work in the field of community development. The study results show that the social enterprises have brought four types of impact in the life of their beneficiaries; economic impact, social impact, political impact and cultural impact. This study is limited to the social enterprises those who work towards community development. This empirical finding will enable the reader to understand various types of social value created by the social enterprises working in the field of community development. This study will also serve as guide for social enterprises in community development activities to measure their impact and thereby improve their operation towards the betterment of the society. This paper is derived from an empirical research carried out to describe the different types of social value created by the social enterprises in India.

Keywords: social enterprise, social entrepreneurs, social impact, social value, tool for social impact measurement

Procedia PDF Downloads 273
17955 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”

Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen

Abstract:

Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.

Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval

Procedia PDF Downloads 170
17954 Size Distribution Effect of InAs/InP Self–Organized Quantum Dots on Optical Properties

Authors: Abdelkader Nouri, M’hamed Bouslama, Faouzi Saidi, Hassan Maaref, Michel Gendry

Abstract:

Self-organized InAs quantum dots (QDs) have been grown on 3,1% InP (110) lattice mismatched substrate by Solid Source Molecular Beam Epitaxy (SSMBE). Stranski-Krastanov mode growth has been used to create self-assembled 3D islands on InAs wetting layer (WL). The optical quality depending on the temperature and power is evaluated. In addition, Atomic Force Microscopy (AFM) images shows inhomogeneous island dots size distribution due to temperature coalescence. The quantum size effect was clearly observed through the spectra photoluminescence (PL) shape.

Keywords: AFM, InAs QDs, PL, SSMBE

Procedia PDF Downloads 687
17953 Sintering of Functionally Graded WC-TiC-Co Cemented Carbides

Authors: Stella Sten, Peter Hedström, Joakim Odqvist, Susanne Norgren

Abstract:

Two functionally graded cemented carbide samples have been produced by local addition of Titanium carbide (TiC) to a pressed Tungsten carbide and Cobalt, WC-10 wt% Co, green body prior to sintering, with the aim of creating a gradient in both composition and grain size in the as-sintered component. The two samples differ only by the in-going WC particle size, where one sub-micron and one coarse WC particle size have been chosen for comparison. The produced sintered samples had a gradient, thus a non-homogenous structure. The Titanium (Ti), Cobalt (Co), and Carbon (C) concentration profiles have been investigated using SEM-EDS and WDS; in addition, the Vickers hardness profile has been measured. Moreover, the Ti concentration profile has been simulated using DICTRA software and compared with experimental results. The concentration and hardness profiles show a similar trend for both samples. Ti and C levels decrease, as expected from the area of TiC application, whereas Co increases towards the edge of the samples. The non-homogenous composition affects the number of stable phases and WC grain size evolution. The sample with finer in-going WC grain size shows a shorter gamma (γ) phase zone and a larger difference in WC grain size compared to the coarse-grained sample. Both samples show, independent of the composition, the presence of abnormally large grains.

Keywords: cemented carbide, functional gradient material, grain growth, sintering

Procedia PDF Downloads 93
17952 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
17951 Development of Value Based Planning Methodology Incorporating Risk Assessment for Power Distribution Network

Authors: Asnawi Mohd Busrah, Au Mau Teng, Tan Chin Hooi, Lau Chee Chong

Abstract:

This paper describes value based planning (VBP) methodology incorporating risk assessment as an enhanced and more practical approach to evaluate distribution network projects in Peninsular Malaysia. Assessment indicators associated with economics, performance and risks are formulated to evaluate distribution projects to quantify their benefits against investment. The developed methodology is implemented in a web-based software customized to capture investment and network data, compute assessment indicators and rank the proposed projects according to their benefits. Value based planning approach addresses economic factors in the power distribution planning assessment, so as to minimize cost solution to the power utility while at the same time provide maximum benefits to customers.

Keywords: value based planning, distribution network, value of loss load (VoLL), energy not served (ENS)

Procedia PDF Downloads 480
17950 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 180
17949 Preparation and Characterization of Nano-Metronidazole by Planetary Ball-Milling

Authors: Shahriar Ghammamy, Maryam Gholipoor

Abstract:

Metronidazole nano -powders with the average mean particle size around 90 nm were synthesized by high-energy milling using a planetary ball mill is provided. The Scattering factors, milling of time,the ball size and ball to powder ratio on the material properties powder by the Ray diffraction (XRD) study, scanning electron microscopy (SEM), IR. It has been observed that the density of nano-sized grinding balls as ball to powder ratio depends. Using the dispersion factor, the density Can be reduced below the initial particle size was achieved.

Keywords: metronidazole, ball-milling, nanoparticles, characterization, XRD diffraction

Procedia PDF Downloads 401
17948 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.

Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)

Procedia PDF Downloads 86
17947 Patients Reactions to Medical Errors in Hospitals: The Need for Social Workers in Nigeria

Authors: Emmanuel Temitope Adaranijo

Abstract:

Medical error is on the increase in many nations and like many developing nations, Nigeria is not excluded and more importantly, Lafia, Nasarawa state, where the study was carried. The study was undertaken to explore Patients' knowledge and their reactions to medical errors in hospitals in Lafia Local Government Area; therefore, five objectives were formulated to guide the study. The survey research design was employed and triangulation of quantitative and qualitative instruments was used to collect data. The total population for the study was 330,712 and the sample size was 400; however, only 343 patients and three doctors responded to the quantitative and qualitative study, respectively. Frequency distribution, simple percentage, and r test were used to analyze the data obtained from respondents. The findings revealed that medical errors are prevalent in hospitals in Lafia and the patients are neither aware nor willing to report such occurrence. The study recommends that social workers, hospital management, and governments should take up their roles in reducing the occurrence of medical errors.

Keywords: health, hospital, medical errors, social work

Procedia PDF Downloads 130
17946 Fostering Social Challenges Within Entrepreneur University Systems: The Case of UPV

Authors: Cristobal Miralles Insa

Abstract:

The network of chairs of the "Valencian Public System of Social Services" (VPSSS) is sponsored by the Valencian Institute of Training, Research, and Quality in Social Services and aims to promote research, dissemination, and evaluation of the needs that arise in the field of the public system of social services. It also seeks to transfer knowledge to foster the development of public policies in this field. Given that it is an Interuniversity Chair among the five public universities in Valencia, there is coordination of complementary themes and roles for this objective, with Universitat Politènica de València focusing primarily on promoting innovation and social entrepreneurship to address multiple social challenges through its platform INSSPIRA. This approach is aimed at the entire university community and its various interest groups, carrying out research, teaching, and dissemination activities that promote social inclusion, personal development, and autonomy for groups in situations of vulnerability, lack of protection, dependence, or social urgency. Although it focuses on the Valencian context, both the issues in this context and the tools in process to address them, often have a universal and scalable character and has been inspiring for the innovation system of UPV. This entrepreneurial incubator goes along from early stages of students on the campus until the so-called “StartUPV” system, where students are challenged with social problems that require creative solutions. Therefore, the Chair is conceived with a holistic spirit and an inspiring vocation that engages the whole university community. In this communication, it is described the entities and individuals participating in this UPV Chair of VPSSS, followed by the presentation of different work lines and objectives for the chair. Subsequently, a description of various activities undertaken to promote innovation in social services are described, where support to teaching and extracurricular activities in this field are exposed. It must be noted that some awareness and dissemination of activities are carried out in a transversal mode as they contribute to different objectives simultaneously; with special focus on Learning-Service approaches that achieved very good results which are also summarized.

Keywords: social innovation, entrepeneurship, university, vulnerable sectors

Procedia PDF Downloads 56