Search results for: semantic filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 868

Search results for: semantic filtering

118 Impact of Expressive Writing on Creativity

Authors: Małgorzata Osowiecka

Abstract:

Negative emotions are rather seen as creativity inhibitor. On the other hand, it is worth noting that negative emotions may be good for our functioning. Negative emotions enhance cognitive resources and improve evaluative processes. Moreover maintaining a negative emotional state allow for cognitive reinterpretation of the emotional stimuli, what is good for our creativity, especially cognitive flexibility. Writing a diary or writing about difficult emotional experiences in general can be the way to not only improve psychical health, but also – enhance creative behaviors. Thanks to translating difficult emotions to the verbal level and giving them ‘a name’ or ‘a label’, we can get easier access to both emotional content of an experience and to the semantic content, without the need of speaking out loud. Expressive writing improves academic results and the efficiency of working memory. The classical method of writing about emotions consists in a long-term process of describing negative experiences. Present research demonstrate the efficiency of this process over a shorter period of time - one writing session, on school children sample. Participants performed writing task. Writing task had two different topics: emotions connected with their negative emotions (expressive writing) and content not connected with negative emotional state (writing about one’s typical day). Creativity was measured by Guilford’s Alternative Uses Task. Results have shown that writing about negative emotions results in the higher level of divergent thinking in all three parameters: fluency, flexibility and originality. After the writing task mood of expressive writing participants remained negative more than the mood of the controls. Taking an expressive action after a difficult emotional experience can support functioning, which can be observed in enhancement of divergent thinking. Writing about emotions connected with negative experience makes one more creative, than writing about something unrelated with difficult emotional moments. Research has shown that young people should not demonize negative emotions. Sometimes, properly applied, negative emotions can be the basis of creation. Preparation was supported by a The Young Scientist University grant titled ‘Dynamics of emotions in the creative process’ from The Polish Ministry of Science and Higher Education.

Keywords: creativity, divergent thinking, emotions, expressive writing

Procedia PDF Downloads 190
117 The Noun-Phrase Elements on the Usage of the Zero Article

Authors: Wen Zhen

Abstract:

Compared to content words, function words have been relatively overlooked by English learners especially articles. The article system, to a certain extent, becomes a resistance to know English better, driven by different elements. Three principal factors can be summarized in term of the nature of the articles when referring to the difficulty of the English article system. However, making the article system more complex are difficulties in the second acquisition process, for [-ART] learners have to create another category, causing even most non-native speakers at proficiency level to make errors. According to the sequences of acquisition of the English article, it is showed that the zero article is first acquired and in high inaccuracy. The zero article is often overused in the early stages of L2 acquisition. Although learners at the intermediate level move to underuse the zero article for they realize that the zero article does not cover any case, overproduction of the zero article even occurs among advanced L2 learners. The aim of the study is to investigate noun-phrase factors which give rise to incorrect usage or overuse of the zero article, thus providing suggestions for L2 English acquisition. Moreover, it enables teachers to carry out effective instruction that activate conscious learning of students. The research question will be answered through a corpus-based, data- driven approach to analyze the noun-phrase elements from the semantic context and countability of noun-phrases. Based on the analysis of the International Thurber Thesis corpus, the results show that: (1) Although context of [-definite,-specific] favored the zero article, both[-definite,+specific] and [+definite,-specific] showed less influence. When we reflect on the frequency order of the zero article , prototypicality plays a vital role in it .(2)EFL learners in this study have trouble classifying abstract nouns as countable. We can find that it will bring about overuse of the zero article when learners can not make clear judgements on countability altered from (+definite ) to (-definite).Once a noun is perceived as uncountable by learners, the choice would fall back on the zero article. These findings suggest that learners should be engaged in recognition of the countability of new vocabulary by explaining nouns in lexical phrases and explore more complex aspects such as analysis dependent on discourse.

Keywords: noun phrase, zero article, corpus, second language acquisition

Procedia PDF Downloads 253
116 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests

Authors: Huseyin Guler, Cigdem Kosar

Abstract:

The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.

Keywords: bridge estimators, HEGY test, model selection, seasonal unit root

Procedia PDF Downloads 340
115 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
114 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering

Authors: Zelalem Fantahun

Abstract:

Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.

Keywords: POS tagging, Amharic, unsupervised learning, k-means

Procedia PDF Downloads 451
113 "Prezafe" to "Parizafe": Parallel Development of Izafe in Germanic

Authors: Yexin Qu

Abstract:

Izafe is a construction typically found in Iranian languages, which is attested already in Old Avestan and Old Persian. The narrow sense of izafe can be described as the linear structure of [NP pt Modifier] with pt as an uninflectable particle or clitic. The history of the Iranian izafe has the following stages: Stage I: Verbless nominal relative clauses, Stage II: Verbless nominal relative clauses with Case Attraction; and Stage III: Narrow sense izafe. Previous works suggest that embedded relative clauses and correlatives in other Indo-European languages might be relevant for the source of the izafe-construction. Stage I, as the precursor of narrow sense izafe, or so-called “prezafe” is not found in branches other than Iranian. Comparable cases have been demonstrated in Vedic, Greek, and some rare cases in Latin. This suggests “prezafe” may date back very early in Indo-European. Izafe-like structures are not attested in branches such as Balto-Slavic and Germanic, but Balto-Slavic definite adjectives and Germanic weak adjectives can be compared to the verbless nominal relative clauses and analyzed as developments of verbless relative clauses parallel to izafe in Indo-Iranian, as are called “parizafe” in this paper. In this paper, the verbless RC is compared with Germanic weak adjectives. The Germanic languages used n-stem derivation to form determined derivatives, which are semantically equivalent to the appositive RC and eventually became weak adjectives. To be more precise, starting from an adjective “X”, the Germanic weak adjective structure is formed as [det X-n], literally “the X”, with the meaning “the X one”, which can be shown to be semantically equivalent to “the one which is X”. In this paper, Stage I suggest that, syntactically, the Germanic verbless relative clauses went through CP to DP relabeling like Iranian, based on the following observations: (1) Germanic relative pronouns (e.g., Gothic saei, Old English se) and determiners (e.g., Gothic sa, Old English se) are both from the *so/to pronominal roots; (2) the semantic equivalence of Germanic weak adjectives and the izafe structure. This may suggest that Germanic may also have had “Prezafe” Stages I and II. In conclusion: “Prezafe” in Stage I may have been a phenomenon of the proto-language, Stage II was the result of independent parallel developments and then each branch had its own strategy.

Keywords: izafe, relative clause, Germanic, Indo-European

Procedia PDF Downloads 67
112 Delving into the Concept of Social Capital in the Smart City Research

Authors: Atefe Malekkhani, Lee Beattie, Mohsen Mohammadzadeh

Abstract:

Unprecedented growth of megacities and urban areas all around the world have resulted in numerous risks, concerns, and problems across various aspects of urban life, including environmental, social, and economic domains like climate change, spatial and social inequalities. In this situation, ever-increasing progress of technology has created a hope for urban authorities that the negative effects of various socio-economic and environmental crises can potentially be mitigated with the use of information and communication technologies. The concept of 'smart city' represents an emerging solution to urban challenges arising from increased urbanization using ICTs. However, smart cities are often perceived primarily as technological initiatives and are implemented without considering the social and cultural contexts of cities and the needs of their residents. The implementation of smart city projects and initiatives has the potential to (un)intentionally exacerbate pre-existing social, spatial, and cultural segregation. Investigating the impact of smart city on social capital of people who are users of smart city systems and with governance as policymakers is worth exploring. The importance of inhabitants to the existence and development of smart cities cannot be overlooked. This concept has gained different perspectives in the smart city studies. Reviewing the literature about social capital and smart city show that social capital play three different roles in smart city development. Some research indicates that social capital is a component of a smart city and has embedded in its dimensions, definitions, or strategies, while other ones see it as a social outcome of smart city development and point out that the move to smart cities improves social capital; however, in most cases, it remains an unproven hypothesis. Other studies show that social capital can enhance the functions of smart cities, and the consideration of social capital in planning smart cities should be promoted. Despite the existing theoretical and practical knowledge, there is a significant research gap reviewing the knowledge domain of smart city studies through the lens of social capital. To shed light on this issue, this study aims to explore the domain of existing research in the field of smart city through the lens of social capital. This research will use the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) method to review relevant literature, focusing on the key concepts of 'Smart City' and 'Social Capital'. The studies will be selected Web of Science Core Collection, using a selection process that involves identifying literature sources, screening and filtering studies based on titles, abstracts, and full-text reading.

Keywords: smart city, urban digitalisation, ICT, social capital

Procedia PDF Downloads 14
111 Computational Team Dynamics in Student New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire.

Keywords: team dynamics, social network analysis, team interaction patterns, new product development teamwork, NPD teams

Procedia PDF Downloads 116
110 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise

Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez

Abstract:

Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.

Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability

Procedia PDF Downloads 147
109 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging

Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi

Abstract:

Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.

Keywords: Web 2/0, social tags, subject headings, hybrid cataloging

Procedia PDF Downloads 159
108 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform

Authors: Khadija Refouh

Abstract:

Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.

Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms

Procedia PDF Downloads 149
107 Examining the Effects of Increasing Lexical Retrieval Attempts in Tablet-Based Naming Therapy for Aphasia

Authors: Jeanne Gallee, Sofia Vallila-Rohter

Abstract:

Technology-based applications are increasingly being utilized in aphasia rehabilitation as a means of increasing intensity of treatment and improving accessibility to treatment. These interactive therapies, often available on tablets, lead individuals to complete language and cognitive rehabilitation tasks that draw upon skills such as the ability to name items, recognize semantic features, count syllables, rhyme, and categorize objects. Tasks involve visual and auditory stimulus cues and provide feedback about the accuracy of a person’s response. Research has begun to examine the efficacy of tablet-based therapies for aphasia, yet much remains unknown about how individuals interact with these therapy applications. Thus, the current study aims to examine the efficacy of a tablet-based therapy program for anomia, further examining how strategy training might influence the way that individuals with aphasia engage with and benefit from therapy. Individuals with aphasia are enrolled in one of two treatment paradigms: traditional therapy or strategy therapy. For ten weeks, all participants receive 2 hours of weekly in-house therapy using Constant Therapy, a tablet-based therapy application. Participants are provided with iPads and are additionally encouraged to work on therapy tasks for one hour a day at home (home logins). For those enrolled in traditional therapy, in-house sessions involve completing therapy tasks while a clinician researcher is present. For those enrolled in the strategy training group, in-house sessions focus on limiting cue use in order to maximize lexical retrieval attempts and naming opportunities. The strategy paradigm is based on the principle that retrieval attempts may foster long-term naming gains. Data have been collected from 7 participants with aphasia (3 in the traditional therapy group, 4 in the strategy training group). We examine cue use, latency of responses and accuracy through the course of therapy, comparing results across group and setting (in-house sessions vs. home logins).

Keywords: aphasia, speech-language pathology, traumatic brain injury, language

Procedia PDF Downloads 204
106 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 95
105 Cosmetic Recommendation Approach Using Machine Learning

Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake

Abstract:

The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.

Keywords: content-based filtering, cosmetics, machine learning, recommendation system

Procedia PDF Downloads 134
104 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging

Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen

Abstract:

Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.

Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques

Procedia PDF Downloads 99
103 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations

Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva

Abstract:

The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.

Keywords: semiotics, language, high school, physics teaching

Procedia PDF Downloads 131
102 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.

Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability

Procedia PDF Downloads 156
101 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
100 Work-Life Balance: A Landscape Mapping of Two Decades of Scholarly Research

Authors: Gertrude I Hewapathirana, Mohamed M. Moustafa, Michel G. Zaitouni

Abstract:

The purposes of this research are: (a) to provide an epistemological and ontological understanding of the WLB theory, practice, and research to illuminate how the WLB evolved between 2000 to 2020 and (b) to analyze peer-reviewed research to identify the gaps, hotspots, underlying dynamics, theoretical and thematic trends, influential authors, research collaborations, geographic networks, and the multidisciplinary nature of the WLB theory to guide future researchers. The research used four-step bibliometric network analysis to explore five research questions. Using keywords such as WLB and associated variants, 1190 peer-reviewed articles were extracted from the Scopus database and transformed to a plain text format for filtering. The analysis was conducted using the R version 4.1 software (R Development Core Team, 2021) and several libraries such as bibliometrics, word cloud, and ggplot2. We used the VOSviewer software (van Eck & Waltman, 2019) for network visualization. The WLB theory has grown into a multifaceted, multidisciplinary field of research. There is a paucity of research between 2000 to 2005 and an exponential growth from 2006 to 2015. The rapid increase of WLB research in the USA, UK, and Australia reflects the increasing workplace stresses due to hyper competitive workplaces, inflexible work systems, and increasing diversity and the emergence of WLB support mechanisms, legal and constitutional mandates to enhance employee and family wellbeing at multilevel social systems. A severe knowledge gap exists due to inadequate publications disseminating the "core" WLB research. "Locally-centralized-globally-discrete" collaboration among researchers indicates a "North-South" divide between developed and developing nations. A shortage in WLB research in developing nations and a lack of research collaboration hinder a global understanding of the WLB as a universal phenomenon. Policymakers and practitioners can use the findings to initiate supporting policies, and innovative work systems. The boundary expansion of the WLB concepts, categories, relations, and properties would facilitate researchers/theoreticians to test a variety of new dimensions. This is the most comprehensive WLB landscape analysis that reveals emerging trends, concepts, networks, underlying dynamics, gaps, and growing theoretical and disciplinary boundaries. It portrays the WLB as a universal theory.

Keywords: work-life balance, co-citation networks; keyword co-occurrence network, bibliometric analysis

Procedia PDF Downloads 196
99 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model

Authors: Ghazal Faraj, Andras Micsik

Abstract:

The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.

Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment

Procedia PDF Downloads 146
98 Meaning Interpretation of Persian Noun-Noun Compounds: A Conceptual Blending Approach

Authors: Bahareh Yousefian, Laurel Smith Stvan

Abstract:

Linguistic structures have two facades: form and meaning. These structures could have either literal meaning or figurative meaning (although it could also depend on the context in which that structure appears). The literal meaning is understandable more easily, but for the figurative meaning, a word or concept is understood from a different word or concept. In linguistic structures with a figurative meaning, it’s more difficult to relate their forms to the meanings than structures with literal meaning. In these cases, the relationship between form and figurative meaning could be studied from different perspectives. Various linguists have been curious about what happens in someone’s mind to understand figurative meaning through the forms; they have used different perspectives and theories to explain this process. It has been studied through cognitive linguistics as well, in which mind and mental activities are really important. In this viewpoint, meaning (in other words, conceptualization) is considered a mental process. In this descriptive-analytic study, 20 Persian compound nouns with figurative meanings have been collected from the Persian-language Moeen Encyclopedic Dictionary and other sources. Examples include [“Sofreh Xaneh”] (traditional restaurant) and [“Dast Yar”] (Assistant). These were studied in a cognitive semantics framework using “Conceptual Blending Theory” which hasn’t been tested on Persian compound nouns before. It was noted that “Conceptual Blending Theory” could lead to the process of understanding the figurative meanings of Persian compound nouns. Many cognitive linguists believe that “Conceptual Blending” is not only a linguistic theory but it’s also a basic human cognitive ability that plays important roles in thought, imagination, and even everyday life as well (though unconsciously). The ability to use mental spaces and conceptual blending (which is exclusive to humankind) is such a basic but unconscious ability that we are unaware of its existence and importance. What differentiates Conceptual Blending Theory from other ways of understanding figurative meaning, are arising new semantic aspects (emergent structure) that lead to a more comprehensive and precise meaning. In this study, it was found that Conceptual Blending Theory could explain reaching the figurative meanings of Persian compound nouns from their forms, such as [talkative for compound word of “Bolbol + Zabani” (nightingale + tongue)] and [wage for compound word of “Dast + Ranj” (hand + suffering)].

Keywords: cognitive linguistics, conceptual blending, figurative meaning, Persian compound nouns

Procedia PDF Downloads 77
97 The KAPSARC Energy Policy Database: Introducing a Quantified Library of China's Energy Policies

Authors: Philipp Galkin

Abstract:

Government policy is a critical factor in the understanding of energy markets. Regardless, it is rarely approached systematically from a research perspective. Gaining a precise understanding of what policies exist, their intended outcomes, geographical extent, duration, evolution, etc. would enable the research community to answer a variety of questions that, for now, are either oversimplified or ignored. Policy, on its surface, also seems a rather unstructured and qualitative undertaking. There may be quantitative components, but incorporating the concept of policy analysis into quantitative analysis remains a challenge. The KAPSARC Energy Policy Database (KEPD) is intended to address these two energy policy research limitations. Our approach is to represent policies within a quantitative library of the specific policy measures contained within a set of legal documents. Each of these measures is recorded into the database as a single entry characterized by a set of qualitative and quantitative attributes. Initially, we have focused on the major laws at the national level that regulate coal in China. However, KAPSARC is engaged in various efforts to apply this methodology to other energy policy domains. To ensure scalability and sustainability of our project, we are exploring semantic processing using automated computer algorithms. Automated coding can provide a more convenient input data for human coders and serve as a quality control option. Our initial findings suggest that the methodology utilized in KEPD could be applied to any set of energy policies. It also provides a convenient tool to facilitate understanding in the energy policy realm enabling the researcher to quickly identify, summarize, and digest policy documents and specific policy measures. The KEPD captures a wide range of information about each individual policy contained within a single policy document. This enables a variety of analyses, such as structural comparison of policy documents, tracing policy evolution, stakeholder analysis, and exploring interdependencies of policies and their attributes with exogenous datasets using statistical tools. The usability and broad range of research implications suggest a need for the continued expansion of the KEPD to encompass a larger scope of policy documents across geographies and energy sectors.

Keywords: China, energy policy, policy analysis, policy database

Procedia PDF Downloads 323
96 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 105
95 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 14
94 Measuring the Resilience of e-Governments Using an Ontology

Authors: Onyekachi Onwudike, Russell Lock, Iain Phillips

Abstract:

The variability that exists across governments, her departments and the provisioning of services has been areas of concern in the E-Government domain. There is a need for reuse and integration across government departments which are accompanied by varying degrees of risks and threats. There is also the need for assessment, prevention, preparation, response and recovery when dealing with these risks or threats. The ability of a government to cope with the emerging changes that occur within it is known as resilience. In order to forge ahead with concerted efforts to manage reuse and integration induced risks or threats to governments, the ambiguities contained within resilience must be addressed. Enhancing resilience in the E-Government domain is synonymous with reducing risks governments face with provisioning of services as well as reuse of components across departments. Therefore, it can be said that resilience is responsible for the reduction in government’s vulnerability to changes. In this paper, we present the use of the ontology to measure the resilience of governments. This ontology is made up of a well-defined construct for the taxonomy of resilience. A specific class known as ‘Resilience Requirements’ is added to the ontology. This class embraces the concept of resilience into the E-Government domain ontology. Considering that the E-Government domain is a highly complex one made up of different departments offering different services, the reliability and resilience of the E-Government domain have become more complex and critical to understand. We present questions that can help a government access how prepared they are in the face of risks and what steps can be taken to recover from them. These questions can be asked with the use of queries. The ontology focuses on developing a case study section that is used to explore ways in which government departments can become resilient to the different kinds of risks and threats they may face. A collection of resilience tools and resources have been developed in our ontology to encourage governments to take steps to prepare for emergencies and risks that a government may face with the integration of departments and reuse of components across government departments. To achieve this, the ontology has been extended by rules. We present two tools for understanding resilience in the E-Government domain as a risk analysis target and the output of these tools when applied to resilience in the E-Government domain. We introduce the classification of resilience using the defined taxonomy and modelling of existent relationships based on the defined taxonomy. The ontology is constructed on formal theory and it provides a semantic reference framework for the concept of resilience. Key terms which fall under the purview of resilience with respect to E-Governments are defined. Terms are made explicit and the relationships that exist between risks and resilience are made explicit. The overall aim of the ontology is to use it within standards that would be followed by all governments for government-based resilience measures.

Keywords: E-Government, Ontology, Relationships, Resilience, Risks, Threats

Procedia PDF Downloads 337
93 A Study on Information Structure in the Vajrachedika-Prajna-paramita Sutra and Translation Aspect

Authors: Yoon-Cheol Park

Abstract:

This research focuses on examining the information structures in the old Chinese character-Korean translation of the Vajrachedika-prajna-paramita sutra. The background of this research comes from the fact that there were no previous researches which looked into the information structures in the target text of the Vajrachedika-prajna-paramita sutra by now. The existing researches on the Buddhist scripture translation mainly put weight on message conveyance by literal and semantic translation methods. But the message conveyance from one language to another has a necessity to be delivered with equivalent information structure. Thus, this research is intended to investigate on the flow of old and new information in the target text of Buddhist scripture, compared with source text. The Vajrachedika-prajna-paramita sutra unlike other Buddhist scriptures is composed of conversational structures between Buddha and his disciple, Suboli. This implies that the information flow can be changed by utterance context and some propositions. So, this research tries to analyze the flow of old and new information within the source and target text. As a result of analysis, this research can discover the following facts; firstly, there are the differences of the information flow in the message conveyance between the old Chinese character and Korean by language features. The old Chinese character reveals that old-new information flow is developed, while Korean indicates new-old information flow because of word order. Secondly, the source text of the Vajrachedika-prajna-paramita sutra includes abstruse terminologies, jargon and abstract words. These make influence on the target text and cause the change of the information flow. But the repetitive expressions of these words provide the old information in the target text. Lastly, the Vajrachedika-prajna-paramita sutra offers the expository structure from conversations between Buddha and Suboli. It means that the information flow is developed in the way of explaining specific subjects and of paraphrasing unfamiliar phrases and expressions. From the results of analysis above, this research can verify that the information structures in the target text of the Vajrachedika-prajna-paramita sutra are changed by specific subjects and terminologies, developed with the new-old information flow by repetitive expressions or word order and reveal the information structures familiar to target culture. It also implies that the translation of the Vajrachedika-prajna-paramita sutra as a religious book needs the message conveyance to take into account the information structures of two languages.

Keywords: abstruse terminologies, the information structure, new and old information, old Chinese character-Korean translation

Procedia PDF Downloads 368
92 Refusal Speech Acts in French Learners of Mandarin Chinese

Authors: Jui-Hsueh Hu

Abstract:

This study investigated various models of refusal speech acts among three target groups: French learners of Mandarin Chinese (FM), Taiwanese native Mandarin speakers (TM), and native French speakers (NF). The refusal responses were analyzed in terms of their options, frequencies, and sequences and the contents of their semantic formulas. This study also examined differences in refusal strategies, as determined by social status and social distance, among the three groups. The difficulties of refusal speech acts encountered by FM were then generalized. The results indicated that Mandarin instructors of NF should focus on the different reasons for the pragmatic failure of French learners and should assist these learners in mastering refusal speech acts that rely on abundant cultural information. In this study, refusal policies were mainly classified according to the research of Beebe et al. (1990). Discourse completion questionnaires were collected from TM, FM, and NF, and their responses were compared to determine how refusal policies differed among the groups. This study not only emphasized the dissimilarities of refusal strategies between native Mandarin speakers and second-language Mandarin learners but also used NF as a control group. The results of this study demonstrated that regarding overall strategies, FM were biased toward NF in terms of strategy choice, order, and content, resulting in pragmatic transfer under the influence of social factors such as 'social status' and 'social distance,' strategy choices of FM were still closer to those of NF, and the phenomenon of pragmatic transfer of FM was revealed. Regarding the refusal difficulties among the three groups, the F-test in the analysis of variance revealed statistical significance was achieved for Role Playing Items 13 and 14 (P < 0.05). A difference was observed in the average number of refusal difficulties between the participants. However, after multiple comparisons, it was found that item 13 (unrecognized heterosexual junior colleague requesting contacts) was significantly more difficult for NF than for TM and FM; item 14 (contacts requested by an unrecognized classmate of the opposite sex) was significantly more difficult to refuse for NF than for TM. This study summarized the pragmatic language errors that most FM often perform, including the misuse or absence of modal words, hedging expressions, and empty words at the end of sentences, as the reasons for pragmatic failures. The common social pragmatic failures of FM include inaccurately applying the level of directness and formality.

Keywords: French Mandarin, interlanguage refusal, pragmatic transfer, speech acts

Procedia PDF Downloads 254
91 Intersections and Cultural Landscape Interpretation, in the Case of Ancient Messene in the Peloponnese

Authors: E. Maistrou, P. Themelis, D. Kosmopoulos, K. Boulougoura, A. M. Konidi, K. Moretti

Abstract:

InterArch is an ongoing research project that is running since September 2020 and aims to propose a digital application for the enhancement of the cultural landscape, which emphasizes the contribution of physical space and time in digital data organization. The research case study refers to Ancient Messene in the Peloponnese, one of the most important archaeological sites in Greece. The project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while, at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user to multiple semantic interpretations. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. New technologies and the integration of digital data enable the implementation of non‐linear narratives related to the representational characteristics of the art of collage. Various images (photographs, drawings, etc.) and sounds (narrations, music, soundscapes, audio signs, etc.) could be presented according to our proposal through new semiotics of augmented and virtual reality technologies applied in touch screens and smartphones. Despite the fragmentation of tangible or intangible references, material landscape formations, including archaeological remains, constitute the common ground that can inspire cultural narratives in a process that unfolds personal perceptions and collective imaginaries. It is in this context that cultural landscape may be considered an indication of space and historical continuity. It is in this context that history could emerge, according to our proposal, not solely as a previous inscription but also as an actual happening. As a rhythm of occurrences suggesting mnemonic references and, moreover, evolving history projected on the contemporary ongoing cultural landscape.

Keywords: cultural heritage, digital data, landscape, archaeological sites, visitors’ itineraries

Procedia PDF Downloads 80
90 Solar Power Generation in a Mining Town: A Case Study for Australia

Authors: Ryan Chalk, G. M. Shafiullah

Abstract:

Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.

Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality

Procedia PDF Downloads 166
89 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example

Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang

Abstract:

Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.

Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital

Procedia PDF Downloads 177